Strongly conjugate: \(W \): finite Coxeter group.

First two elements are "elementarily strongly conjugate" if

\[
W, W' \in W
\]

and \(x \in W \) s.t.

\[
\begin{align*}
Wx &= xW' & \text{and } l(wx) &= l(w) + l(x) \\
\text{or } xW &= W'x & \text{and } l(xw) &= l(x) + l(w)
\end{align*}
\]

"strongly conjugate" if \(\exists \) sequence \(W = w_0, w_1, \ldots, w_r = W' \) with \(\{ w_i \mid w_i \text{ elementarily strongly conjugate} \} \).

Thm. (3.2.9 in Geck-Pfeiffer) Any two elements in \(C_{\text{min}} \) are strongly conjugate.

(\(C_{\text{min}} \): elts of min length in a given conj. class \(C \) of \(W \)).

Weaker notion from conjugacy graph - graph with vertices \(\forall w \exists w' \in W \)

and labeled directed edges \(w \xrightarrow{\sigma} w' \) if \(w' = \sigma w \sigma^{-1} \) with \(l(w') \leq l(w) \).

\[s_2s_1 = s_1s_2 = s_2s_1s_2 \]

Define \(\text{Cyc}(w) = \{ v \in W \mid w \xrightarrow{\sigma} v, \sigma \xrightarrow{\sigma} w \} \) (implies \(l(w) = l(v) \))

"cyclic shift class" a path exists in conj. graph.

If \(\sigma w \sigma \) satisfy \(w' = \sigma w \sigma \). Need either \(l(sw) > l(w) \) or \(l(ws) > l(w) \) to be strongly conjugate.

Problem case:

\[
l(sw) = l(ws) < l(w). \quad \text{claim: then } w = sws (= w') \Rightarrow.
\]

Thm: (a) Given \(w \in C \), \(\exists w' \in C_{\text{min}} \) with \(w \xrightarrow{} w' \)

(b) Given \(w, w' \in C_{\text{min}} \), \(\exists w' \in \text{Cyc}(w) \) and \(x \in W \) s.t. \(w', v \) elementarily strongly conj. via \(x \).
Lemma: If \(w, w' \in W \) are strongly conjugate, then \(Tw \) and \(Tw' \) are conjugate in \(H \) and hence \(Tw \equiv Tw' \mod [H, H] \).

pf: if \(h' = xhx^{-1} \) for some unit \(x \in H \) then
\[
h - h' = h - xhx^{-1} = x^{-1}xh - xhx^{-1} = [x^{-1}, xh] \in [H, H]
\]
so it is enough to show they are conjugate.

Claim: If \(w, w' \in W \) are strongly conjugate, then they are conjugate in the braid group. (Recall braid gp is generated by \(s \in S \) with
\[
sts\ldots = tsts\ldots
\]
max. \(m \)st factors
factors
So if \(\langle s \rangle \), infinite cyclic gp - integer powers of \(s \)

then, if we can show claim, we're in good shape as \(J \) algebra homomorphism
\[
R[Braid gp] \to H \quad \text{so conjugation is preserved}
\]
\(W \leftrightarrow Tw \)

(so we are using fact that \(Tw \) invertible here, which requires \(g \), invertible.
In generic Hecke algebra, adjoin \(g \) and \(g^{-1} \).
)

pf of claim: Suffices to show if \(w_1, w_2 \) are elementarily strongly conjugate.

But if \(x \in W \) s.t. \(w_1x = xw_2 \) and \(\ell(w_1x) = \ell(w_1) + \ell(x) \)
this is precisely what is needed for equality \(w_1x = xw_2 \) in \(B \) braid.

(aren't we using quadratic relation \(s^2 = 1 \) anywhere?)
Now given \(w \in W \), either \(w \in C_{\text{min}} \subseteq C \), and then

\[
T_w \equiv T_{w_0} \pmod{[H,H]},
\]

or else \(w \in C \setminus C_{\text{min}} \), and then \(w \) related to \(w' \) by \(\gamma \)-map \(\psi \) in \(C_{\text{min}} \).

(sequence \(w = w_0, \ldots, w_r = w' \) with \(\ell(w_i) \leq \ell(w_{i-1}) \))

with \(w_{i-1} = w_i \)

\(W = w_0 \) and \(w_i = s_{w_i} s \) with \(\ell(w_i) \leq \ell(w) \).

Suppose \(W = w_0, \ldots, w_i, w_{i+1} \) equality first drop.

\[\text{must be strict somewhere since } \ell(w') < \ell(w). \]

claim: \(T_w = q_s T_{w_i} s \pmod{[H,H]} \)

\[+ (q_s - 1) T_{w_i} \]

Indeed had \(T_w = T_{w_i} \)

now \(T_{w_i} \)

\[(q_s T_{w_i} s + (q_s - 1) T_{w_i}) T_s \]

\[= q_s T_{w_i} s + (q - 1) T_{w_i} = T_s \cdot T_{w_i} \]

so inverting \(T_s \), we're done.

Example: \(W = s_1 s_2 s_1 \in A_2 \). \(W^* = s_2, s = s_1 \)

then \(T_w = q_s T_{s_2} + (q - 1) T_{s_1 s_2} \)

character table example...
A_2 character table

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>s</th>
<th>st</th>
</tr>
</thead>
<tbody>
<tr>
<td>triv</td>
<td>1, q</td>
<td>q^2</td>
<td></td>
</tr>
<tr>
<td>sgn</td>
<td>1, -1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>reflection</td>
<td>2, $q-1$, $-q$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Know, for example that all other 3 elements are in $C_{min} = \equiv 0 \mod \langle H_i, H_j \rangle$ except for st's = wo.

Our algorithm gave $T_W = q T_s + (q-1) T_{ts}$ $[H_i, H_j]$

So T_W in reflection rep'n p has $Tr(p(T_W))$

Orthogonality: used our nice trace function

to conclude:

$$
\sum_{w \in W} q^{-\ell(w)} \chi(T_w) \chi'(T_{w^{-1}}) = \sum_{\chi \neq \chi'} \chi(T_e) \cdot \delta_{\chi, \chi'}
$$

= 0.

Check: for reflection rep'n:

$$
4 + 2 \left(\frac{q-1}{q} \right)^2 + 2 \left(\frac{-q}{q} \right)^2 / 2
$$

= $4 + 2 (q-2 + q^{-1}) + 2 / 2$

= $2 (q^2 + 1 + q^{-1}) / 2$

= $q^2 + 1 + q^{-1}$.

Induction from parabolic subalgs. Punchline - induction compatible with specialization.

Just as with Coxeter gps, given

subset \(J \subseteq S \), with \(W_J \leq W \) the parabolic subgp.,

form subalgebra \(H_J = \langle T_w \mid w \in W_J \rangle_R \) : free mod. \(/R\)

(If we define \(X_J := \{ w \in W \mid l(sw) > l(w) \forall s \in J \} \)

then \(W = W_J \times X_J \) and if \(W = (v, x) \)

then \(l(w) = l(v) + l(x) \).

so have nice set of right coset reps

\(\star \) of \(W_J \) in \(W \).

(\#)

Deodhar's Lemma: \(J \subseteq S \), \(x \in X_J \), \(s \in S \), then either

\(xs \in X_J \) or \(xs = ux \) for some \(u \in J \). (So \(u \)'s simple.)

(if \(xs \notin X_J \), \(J \subseteq J \) s.t. \(l(uxs) < l(xs) \)

since \(x \in X_J \), then \(l(uxs) > l(x) \)

\(\Rightarrow \) \(l(xs) > l(x) \), use cancellation law to

show \(xs = ux \).

(\#)

so \(H = \bigoplus_{x \in X_J} H_J \cdot T_x \).
Define \[\text{Ind}_{H_j}^H (v) := v \otimes_{H_j} H. \]

\[(v \otimes h) \cdot h' = v \otimes (hh') \]

So in Hecke algebra, elements in \[\text{Ind}_{H_j}^H (v) \]

may be written uniquely in the form \[\sum_{x \in x_j} v_x \otimes T_x \]

some \(v_x \)'s \(\in V \).

How do we act on \(\text{elts by } T_s \)?

\[(v \otimes T_x) \cdot T_s = \]

\[v \cdot T_x \otimes T_s \]

if \(xs = tx \)

\[v \otimes T_{xs} \]

if \(xs \in x_j \)

\[v \otimes (qT_{xs} + (q-1)T_x) \]

if \(xs \notin x_j \)

\[\sum_{t \in J} v \cdot T_t \otimes T_x \]

\[v \otimes T_{xs} \]

\[\text{if } xs \in x_j \]

\[\text{if } xs \notin x_j \]

Use Dedekind's Lemma

if \(V \) is free \(R \)-mod.

Then we can also expand \(v \cdot T_s \) action

in terms of basis.

Example: \(A_3 = \langle s_1, s_2, s_3 \rangle \)

\[\text{Ind}_{H_j}^H \text{ (triv)} \]

with \(J = \langle s_1, s_2 \rangle \)

\[|x_J| = 4 - \]

\[x_J = \{ 1, s_1, s_3, s_2s_1, s_3s_2s_1 \} \]

\(\text{triv acts on 1-dim'\'} \)

\[\text{v.s. } C \]

with gen 1.