Algebraic gps. — Study matrix gps. like $GL_n(F), F$ field.

If $F = \mathbb{R}, \mathbb{C}$ then has structure of Lie gp. (group and diff manifold)

We won't $F = GF_q$, finite field or \mathbb{Q}_p: p-adic completion. Need algebraic groups.

For us, need only affine varieties.

Over algebraically closed fields, particularly simple: K

V: subsets of K^n which are simultaneous zeros of $\{f_i\}_{i \in S}$

variety $\phi \quad \eta \rightarrow \mathfrak{m}$ ideals: $f \text{ s.t. } f(v) = 0 \forall v \in V$

vanishing set $\eta \quad \phi \rightarrow \mathfrak{m}$ define ideal.

and $V(\mathfrak{m}) = V$ but $J(V(\mathfrak{m})) = \sqrt{\mathfrak{m}}$

affine subvarieties of V form closed sets

in topology — Zariski topology.

Algebraic gp. $/K$ is a set G which is an algebraic variety $/K$

and group with group maps in right category:

$$(x, y) \mapsto xy \quad x \mapsto x^{-1}$$

are morphisms of varieties.

Really a functor of all commutative K-algebras E.

giving gp. structure to rational points $G(E)$.

\[\text{in bijection with algebra homoms. on coordinate rings} \]

\[K[G] = K[x_1, \ldots, x_n]/J(V). \]

(maps continuous in Zariski topology.

In affine entry, these arise as polynomial maps restricted from $K^n \rightarrow K^n$ affine spaces.)
Example: \(GL_n(K) = \{ (a_{ij}) \in K^{n \times n} \mid \det(a_{ij}) \neq 0 \} \)

Problem: not closed subset of \(K^{n \times n} \), not affine variety.

\[= \{ (a_{ij}), b) \in K^{n \times n+1} \mid b \cdot \det(a_{ij}) = 1 \} \]

easy check that operations mult and inverse are poly. expressions \(\checkmark \) in \((a_{ij}), b \).

so closed subgps of \(GL_n(K) \) are also affine algs. gps. "linear algebraic gps"

And in fact every affine algs gp \(\cong GL_n(K) \) for some \(n \).

other examples: In \(GL_2(K) : \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \lambda \in K.

multiplication = addition in entry 1,2.

\[\begin{pmatrix} 1 & \lambda_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \lambda_2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \lambda_1 + \lambda_2 \\ 0 & 1 \end{pmatrix} \]

call this isom. class \(G_a \) a "additive."

Whole gp. \(GL_1(K) \cong K^\times \), call this isom. class \(G_m \) "multiplicative"

both gps of dimension 1

where \(\dim(v) = \text{transc. deg. of Frac}(K[v]) / K \).

What is its Lie algebra? What about lie group case?

- Space of left-invariant vector fields

- Elements whose exponential map lives in lie gp along one-parameter subgp. (matrix groups)

- tangent space for identity.

this we can adapt, using correspondence between \(V \) and its

coordinate ring \(K[v] = K[x_1, \ldots, x_m] / \mathfrak{m}(v) \).
Have derivations $D : K[V] \to K_v$ linear map s.t. $(K_v : K$ as $K[x]$ module by mult. by $f(x))$

$$D(fg) = Df \cdot g(v) + f(v) \cdot Dg \quad \forall f, g \in K[V].$$

$T_v(V) : \text{ set of all such derivations.}$

$$= \{ D_a = a_1 \frac{\partial}{\partial x_1} + \cdots + a_n \frac{\partial}{\partial x_n} \mid D_a (J(v)) = J(\{v\}) \}$$

- Why does it have Lie alg. structure? — (when $V \leftrightarrow G : \text{alg. gp.}$)

If G algebraic gp. with coord. ring $K[G]$, define right mult. action by $x \in G$:

$$f^x(t) = f(t \cdot x).$$

Then $\alpha_x : f \mapsto f^x$ is K-algebra autom. of $K[G].$

So have homom $G \to \text{ Aut } (K[G])$

$\alpha_x \mapsto \alpha_x.$

Der $(K[G]) = \{ D : K[G] \to K[G] \mid D(f_1 f_2) = Df_1 \cdot f_2 + f_1 \cdot Df_2 \}$

$\forall f_1, f_2 \in K[G].$

Form Lie algebra with bracket

$$[D_1, D_2] = D_1 D_2 - D_2 D_1.$$

Check that it is bilinear, skew-symm. and satisfies Jacobid identity $= -[D_2, D_1]$.

Has subalgebra

Der $(K[G])^G : D \text{ s.t. } D \alpha_x = \alpha_x D.$

And $\text{Der } (K[G])^G \sim_{y.s.} T_e (G)$

$$D \mapsto (f \mapsto Df(e))$$

Example: $\text{GL}_n(K)$ is Zariski open set in $\text{End } (K^n)$ with tangent space $\text{ at } e = \text{ ambient space }$, so has Lie algebra $\text{ End } (K^n) = \text{Mat}_n(K) = g\text{ln}_n(K).$
Adjectives: \(G \) linear alg. group \(\subseteq GL_n(K) \).

\(T \in GL_n(K) \) is semisimple if diagonalizable.

\(T \in GL_n(K) \) is unipotent if all eigenvalues of \(T \) are 1.

(independent of embedding, so makes sense for \(G \).

a.k.a. fastful repn.

Jordan decomposition: Each \(x \in G \) uniquely expressed as

\(x = x_s x_u = x_u x_s \) \(x_s \) semisimple, \(x_u \) unipotent.

(homoms. of LAGs preserve semisimple, unipotent parts)

Work over any field - just need to replace "algebraic variety" with proper definition over that field. \(F \)

then semisimple means diagonalizable over \(\overline{F} \): algebraic closure of \(F \)

the definition of unipotent oh.

A LAG is said to be unipotent if all its elements are unipotent.

We say \(G \) is reductive if unip. radical is trivial.

Given an arbitrary \(G \),

\(\) unipotent groups are not nilpotent, but they are solvable:

The series

\[G = G^{(0)} \supseteq G^{(1)} \supseteq \ldots \]

with \(G^{(i+1)} = [G^{(i)}, G^{(i)}] \) terminates in identity.

Also define radical of \(G \) as maximal normal solvable subgroup, \(G \) semisimple if radical is \(\{e\} \)

For \(GL_n(K) \), radical is scalar matrices as \(1 \to K^* \to GL_n(K) \to \text{Pol}_n(K) \to 1 \)

and \(\text{Pol}_n(K) \) is simple. None of these are unip. except \(G \), so \(GL_n(K) \)

is reductive.