Given reductive alg. gp. \(G \) with maximal torus \(T \),

form characters \(X = \text{Hom}(T, \mathbb{G}_m) \), cocharacters \(Y = \text{Hom}(\mathbb{G}_m, T) \)
in duality via non-deg. pairing \((\chi, \gamma) \mapsto \chi \circ \gamma\) as elt. of \(\mathbb{Z} \).

Given minimal proper subgps \(U_d \) of \(U, U^- \) normalized by \(T \),

\[\forall d \in X = \text{Hom}(T, \mathbb{G}_m) \quad \text{from action of } T \text{ on } U_d \cong \mathbb{G}_a \]

by conjugation.

\(d \) "root" of \(G \), \(\Phi \); set of all roots.

\(\Phi^- \): roots in \(U^- \), \(\Phi^+ \): roots in \(U \)

Fact: \(G \) is generated by \(T, U_d : d \in \Phi \).

In \(GL_n \), \(U_d \)'s are of form \(U_{d_{ij}} = \{ I_n + \mu \cdot E_{ij} \mid \mu \in K \} \)

with \(d_{ij} : (x_1, \ldots, x_n) \mapsto x_i x_j^{-1} \). Pick off exponents

\((0, 0, 1, 0, 0, -1, 0, 0)\) \(\uparrow \) \(T \) \(\uparrow \) \(i \) \(\uparrow j \)
E_1 in GL_n, U_{d_1}'s are given by one-parameter subgps
so label them U_{d_1} according ly.
\[\xi \in \mathbb{Z} \Rightarrow E_{ij} \quad (\xi \in \mathbb{Z}) \]
\[\text{elem. matrix with } 1 \text{ in position } (i,j) \]

roots \(\alpha_{ij} \) are elements of
\[\text{Hom} \left(T, G_m \right) \text{ corresponding to cong action} \]
\[t = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right) \quad U_{ij} = \left(\begin{array}{c} 1 \\ \vdots \\ \mu \end{array} \right) \rightarrow \text{ then cong multiplies} \mu \text{ by } x_i x_j^{\text{col j}} \]
so \(\alpha_{ij} : \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right) \rightarrow x_i x_j^{\text{col j}} \)

Good way to think about reductive gps - built out of embedded copies of \(SL_2 \)

If \(\alpha \) root, \(-\alpha \) opposite root
(in corresponding \(U^- \) to \(U \)
related by conjugation)
of corresp. \(B, B^- \)

Consider \(\left< U_{\alpha}, U_{-\alpha} \right> \subseteq G \). Turns out this is either \(\simeq \text{ SL}_2(K) \)
or \(\text{ PGL}_2(K) = \text{ GL}_2(K)/\pm 1 \)

and \(\exists \) homom. \(\phi_{\alpha} : SL_2(K) \rightarrow \left< U_{\alpha}, U_{-\alpha} \right> \)
s.t. \(\phi_{\alpha} \left(\begin{array}{cc} 1 & * \\ 0 & 1 \end{array} \right) \rightarrow U_{\alpha}(*) \)

\[\phi_{\alpha} \left(\begin{array}{cc} 1 & * \\ 0 & 1 \end{array} \right) \rightarrow U_{-\alpha}(*) \]

then \(\phi_{\alpha} (\lambda, \chi) \) is 1-dim'l subgp. of \(T \). Set
\[\alpha^\vee = G_m \rightarrow T \]
\[\lambda \mapsto \phi_{\alpha}(\lambda, \chi) \quad \left< \alpha, \alpha^\vee \right> = 2. \]
For example in $\text{GL}_n(K)$:

$$\alpha_{ij} : \lambda \mapsto \left(\begin{array}{l}
\lambda_1 \\
\vdots \\
\lambda_i \\
\lambda_{i+1} \\
\vdots \\
\lambda_n
\end{array} \right)$$

We obtain elements

$$w_\alpha := \phi_\alpha \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in \langle X_\alpha, X_{-\alpha} \rangle \quad \text{in} \quad N(C) , \quad \text{and one}
$$

may check that it acts on roots, coroots via:

$$w_\alpha (\alpha) = \alpha - \langle \alpha, \alpha^\vee \rangle \alpha^\vee$$

$$w_\alpha (\alpha^\vee) = \alpha^\vee - \langle \alpha, \alpha \rangle \alpha$$

and thus $w_{\alpha} = w_{-\alpha}$ and $w_{\alpha}^2 = 1$.

Fact: w_{α} generate $W := N(C)/T$.

In $\text{GL}_n(K)$, $w_{\alpha_{ij}}$ acts as transposition $(i \, j)$, generating $S_n = A_{n-1}$.

Classification Thm. for reductive gps: The quadruple $(\alpha, \alpha^\vee, \beta, \beta^\vee)$

is called a "root datum".

Given $G \cong (\alpha, \alpha^\vee, \beta, \beta^\vee)$

in reverse direction, if α, β free abelian gps of equal rank

with non-deg pairing $\alpha \times \beta \rightarrow \mathbb{Z} = \langle, \rangle$

β, β^\vee finite sets with associated reflections $w_d : \beta \rightarrow \beta$ preserving β, β^\vee in bijection with $\langle \alpha, \alpha^\vee \rangle = 2$ reduced crystallographic root systems (finds subset closed under reflections S_d)

then $\exists \, G/\mathbb{K} = K$ closed with this root datum.
So given \(G \) as root datum \((X, \Pi, Y, \Pi')\) with Weyl group \(W = \langle \omega_d \rangle \) \(\omega_d \in \Pi\).

\(W \) is a Coxeter gp. Which Coxeter gps can arise?

- Can prove \(\Pi \) is reduced (so assoc. Cartan matrix has \(c_{s,t} = c_{t,s} \) if \(m_{s,t} \) odd).
- (only mult. of \(d \) in \(\Pi \)

 are \(\pm \alpha \))

\(\Rightarrow \) \(m_{s,t} = 2, 3, 4, \) or \(6 \).

(Other values result in \(c_{s,t} \)'s not rational.)

For Finite Coxeter gps: Families \(A, B, D, \) dihedral, \(+ \) finite list.

-

 \(A, B, D \) as before (all roots have same length.)

 \(B \) Coxeter gp has two forms. Classes of root systems

\(\rightarrow \)

Coxeter gp with \(\alpha_6 \) is also ok.

\(G_2 \) \(\alpha_6 \)

\(F_4 \) \(\alpha_6 \)

\(E_6, E_7, E_8 \) simply laced

H's not possible - have order 5 relations...

Q: Do there exist groups \(G \) attaining these? Is this a classification of reductive alg. gps?

Pf of (x) - or more refined statement:

\[W \delta \cdot \chi = \chi - \langle \chi, \alpha_d \rangle \alpha \quad \forall \chi \in X \]

integer valued

\(\chi \Pi \rightarrow \mathbb{Z} \)

Reductive gps have coroot lattice in duality with root lattice by integral form. Not possible for all finite Coxeter gps.
Of course, root systems alone won't determine root datum.

Examples: \(\text{GL}_n, \text{SL}_n, \text{PGL}_n \) all have root system \(\text{An-1} \cong \text{Sn} \).

\(\text{GL}_n \) has character lattice \(\Z^n \), \(\text{SL}_n, \text{PGL}_n \) have lattice \(\Z^{n-1} \).

(\(G \) is semisimple \(\Rightarrow \) char. lattice has same rank as root system)

But known even \(\text{SL}_2, \text{PGL}_2 \) not isomorphic: \(\text{SL}_2 \) contains \(\pm 1 \dagger \), \(\text{PGL}_2 \) has only one class.

Compute coroots for the two gps:

\(\text{SL}_2: \quad \chi = \langle \chi \rangle \quad \chi: (t^a t^b) \rightarrow t^a \)

\(\alpha: (t^a t^b) \rightarrow t^a \quad \Z\alpha = \langle 2\alpha \rangle \)

\(\alpha^\vee: t \rightarrow (t^a t^b) \quad \text{so } \gamma = \Z\alpha^\vee \).

\(\text{PGL}_2: \quad \text{Torus is } \langle \langle \begin{pmatrix} t^1 & t^2 \\ 1 & 1 \end{pmatrix} \rangle \rangle \quad \text{so has representatives} \)

\(\langle \begin{pmatrix} t^1 & t^2 \\ 1 & 1 \end{pmatrix} \rangle \)

\(\langle \begin{pmatrix} t & 1 \\ 1 & t \end{pmatrix} \rangle \)

\(\langle \begin{pmatrix} t & 0 \\ 0 & t \end{pmatrix} \rangle \)

\(\langle \begin{pmatrix} 1 & t \\ t & 1 \end{pmatrix} \rangle \)

\(\langle \begin{pmatrix} 1 & t \\ t^2 & 1 \end{pmatrix} \rangle \quad \text{algebraic characters: } (t^a, t^b) \rightarrow t^a \quad \text{so } \langle \beta \rangle \text{ with } \beta \text{ corresp. to } n=1. \)

\(\chi \) and \(\beta \) is a root.

while \(\beta^\vee: t \rightarrow (t^a t^b) \quad \text{according to } \langle \beta, \beta^\vee \rangle = 2. \)

so \(\Z\beta^\vee = 2\gamma \), \(\gamma \) cocharacter (lattice).

Upshot: In \(\text{SL}_2 \) and \(\text{PGL}_2 \) roles of \(\chi, \gamma \) with \(\beta \) and \(\beta^\vee \) are reversed.

not the same root datum.