unramified principal series:

\[\chi : T(F) \to \mathbb{C}^* \], form repn \(\text{Ind}_{B}^{G} (\chi) \) (better:

\[\text{Ind}_{B}^{G} (\delta_B \chi) \]

that is, view \(\chi \) as character of \(B \),
writing \(b = \varepsilon u, \varepsilon \in T(F), \ u \in U(F) \)

then setting \(\chi(b) = \chi(\varepsilon) \) "inflate to \(B \)"

If we take \(\chi \) trivial on \(T(\theta) \), so \(\chi : T(F)/T(\theta) \to \mathbb{C}^* \)

"unramified"

then this repn \(i(\chi) \) will have

\(G(\mathfrak{o}) \)-fixed vectors (Iwasawa decomposition \(G = BK \)

\[B : \text{Borel } \quad K : \text{max'd comp.} \]

over local field \(G(F) = B(F) \cdot G(\mathfrak{o}) \)

with \(B(F) \cap G(\mathfrak{o}) = B(\theta) \).

\[\chi \left(\pi^{m_1} \cdots \pi^{m_r} \right) = z_1^{m_1} \cdots z_r^{m_r} \]

for some choice of \(z_i \in \mathbb{C} \).

If \(z_i \)'s are in general position (ex. numbers for \(\delta_B \chi \) are not in same W-orbit)

then \(i(\chi) \) will be an irreducible representation,
(also smooth, admissible).

What is unique-up-to-scalar-mult. \(K \)-fixed vector? (\(K = G(\mathfrak{o}) \) here)

\[f(g) = \delta_B^{-\frac{1}{2}} \chi(b) \chi(\varepsilon) \]

if \(g = \varepsilon b k : \text{Iwasawa decom.} \)

or further \(b = \varepsilon u, \varepsilon \in T(F)^*/T(\theta) \)

\[f(b) \]

\[= q^{ - \langle \rho, \mu \rangle} \]

\[= \pi^{\mu} u \cdot \mu \cdot \pi^r \]

\[\rho : \frac{1}{2} \sum_{\alpha \in \Phi^+} \]

Call \(f^0 \), where \(\circ \) is for "spherical"

\(K \)-fixed called spherical since \(\text{SO}(2,12) \)
is max'm comp of \(SL \).
Given \(i(x) \rightarrow i(x)^K = \langle f^0 \rangle \sim 1 \)-dimensional \(\mathcal{H}(G/k) \)-module, i.e. linear character of \(\mathcal{H}(G/k) \)

eigenvalue is in terms of \(\pi \), lets us recover principal series.

Automorphic form is vector in autom. repn of \(G(A_F) \) \(F \): Global field
\(A \): Adèlic ring
\(\pi = \bigotimes_v \pi_v \)

with \(f = \bigotimes_v f_v \).

For almost all \(v \), \(f_v \) is a \(K \)-fixed vector in unramified principal series.

To understand automorphic forms locally, almost all places, we can apply matrix coefficient. Try to build an \(L \)-function.

Example (Jacquet-Langlands 1970)
Global Whittaker function \(W(g, u) = \int_{F \backslash A} f(c(1, i, u)g, \alpha \mathbf{l}^{-1}) \psi(-u) \, du \)

\(\psi \): additive char. of \(A \) trivial on \(F \).
\(du \): gives \(F \backslash A \) measure 1.

Just like Fourier analysis, reconstuct \(f \) by ranging over various \(\psi' \) (all realized as \(\psi(m, u) \) for some \(m \in F^\times \),

by change of vars, move \(m \) to multiply \(g, u \).

Get \(f(g, u) = \sum_{m \in F^\times} W(g, \alpha(m, i) g, u) \)

Form \(L(s, f) = \int_{F^\times \backslash A^\times} f(c(1, i, u) \mathbf{l}^{-1}, \alpha) \left| \det A \right|^{s-1/2} \frac{d^* A}{\text{mult. Haar measure}} \)

Substitute Whittaker expansion collapse summation over \(F^\times \) with \(F^\times \) in quotient.
\[= \int \sum_{m \in F^*} W(m \cdot 1) (a \cdot 1) \left| a \right|_{A^*}^{s-\frac{1}{2}} \, d^*a \]

\[= \int W(a \cdot 1) \left| a \right|_{A^*}^{s-\frac{1}{2}} \, d^*a \]

\[= \prod_{v \in \mathbb{A}^*} W_v(a_v \cdot 1) \left| a_v \right|_v^{s-\frac{1}{2}} \, d^*a_v \]

Want to explain reworking of results of Shintani- Kato- Casselman- Shalika —

who computed, in increasing levels of generality, the local Whittaker coefficients.

More algebra, less analysis:

Consider \(H(G/H) \)-module \(C_c \left(T(\mathbb{Q}) \backslash G / H \right) =: M \).

"universal" principal series.

Said that \(T(F)/T(\mathbb{Q}) \sim X_*(T) \) : character:

\[R := \mathbb{C} [X_*(T)] \]

let \(\pi^A \mapsto \pi^A \in R \) be the "topological character" or "universal char."

then \(M \cong \text{Ind}_B^G \left(X_{\text{univ}}^{-1} J \right) \)

\[\phi \in C_c \left(T(\mathbb{Q}) \backslash G \right) \mapsto \sum_{a \in T(F)/T(\mathbb{Q})} \delta_B^J(a \cdot a^{-1} g) \]

Way to study all characters \(\chi : T(F)/T(\mathbb{Q}) \rightarrow \mathbb{C}^\times \) at once. Indeed such a choice of \(\chi \) determines \(\mathbb{C}\)-alg. homom. \(R \rightarrow \mathbb{C} \), \(\Sigma \mapsto \Sigma \phi(z) \).