Discriminant of $\text{H} \gen W$ is a Laurent poly. in q_i's.

There is a specialization homom. $k \to k^\times$ taking $q_i \mapsto q$

$\text{H} \gen W \to \text{H} q[W]$ and $\text{H} q[W]$ will be semisimple if $q \notin \{0, 1\}$ and $\{D(q) = 0\}$

finite set of points

Final powerful result here:

Tits' Deformation Theorem: Before stating it, two definitions.

Separable algebra: semi-simple for every extension L/K (including K itself).

Let $A_L := A \otimes_K L$ is semisimple. (term comes from special case of $K[a_1, \ldots, a_n] = L$ with sq. minimal poly.) (if char. of $k = 0$, semi-simple.

this is immediate from trace criterion)

Numerical invariants: dimensions of simple modules for $A \otimes_K \overline{k}$

with \overline{k}: alg. closure of k. A : separable algebra/k.

(there are n_i's in Artin-Wedderburn $A \otimes_k \overline{k} = \text{Mat}_{n_i}(E) \times \cdots \times \text{Mat}_{n_r}(E)$)

Tits' deformation fam: R integral domain, $\text{Frac}(R)$: field of fractions

$f: \begin{array}{c} \overline{k} \\to k \end{array}$ (specialization) hom. of rings

If A is R-algebra with finite basis, and A_f : algebra obtained by specialization.

If $A \otimes_R R^\times$ and A_f are separable, THEN they have the same numerical invariants!
pf. of Tits' thm: \(T_k = \text{alg. cl. of } k = \text{Frac}(R), \ F = \text{alg. cl. of } F \)

\[\dim_k A^k = n. \text{ Write } \text{"general elts" } a \in A^k = \sum_{i=1}^{n} a_i t^i \]

with associated characteristic polys.

\[a_f \in A_f = \sum_{i=1}^{n} t^i a_i' \text{ where } a_i' = 1 \otimes a_i \]

(Pe k'[x], Pf \in F'[x], respectively.)

(Remember k', notation is \(k[t_1, \ldots, t_n] \), \(\text{Frac}(R[t_1, \ldots, t_n]) \).)

Extend \(f \) to polynomial rings \(f: R'[x] \rightarrow F'[x] \)

by simply mapping \(t_i \mapsto t_i' \). Then \(f(P(x)) = P_f(x) \)

(since structure const. in \(R'[x] \)

map to \(f(\text{str. const.}) \)

by previous lemma, (**) \(\overline{R} P_i(X)^{t_i} \) in \(\overline{F}'[x] \) with \(P_i : \text{numeralized invariants} \).

Just need analogous factorization of \(P_f(x) \) in \(\overline{F}'[x] \). For this,

need a couple standard facts from commutative algebra:

\(P \) is monic, so its roots are said to be "integral" over \(R' = R[t_1, \ldots, t_n] \)

and roots of \(P_i \) will be symmetric functions in these roots of \(P \),

so also integral over \(R' \), and live in \(\overline{E}' = \overline{E}[t_1, \ldots, t_n] \)

Fact: integral closure of \(R' \) in \(\overline{E}' \) is \((R')' = \text{inf. cl. of } R \) in \(\overline{E} \)

(Prop. 13 in Ch. 5 of Bourbaki's Comm. Alg.)

So \(P_i(X) \in \overline{R}'[x] = \overline{E}[t_1, \ldots, t_n][x] \).
Second comm. alg. fact: \(f: R \to F \) extends to a homom. \(\bar{f}: \bar{R} \to \bar{F} \).

(and thus extension of \(f \) to \(R'[x] \to F'[x] \) extends to \(\bar{f}: \bar{R}'[x] \to \bar{F}'[x] \).)

Thus applying to (**) , \(\bar{f}(P(x)) = P_{\bar{f}}(x) \) since \(P \in R[x] \)

\[= \prod_i \bar{f}(P_i(x))^{{}\overline{p}_i} \]

So we win if we can show that \(p_i \) are numerical invariants of \(A_f \).

This is immediate from (4) in previous lemma, since \(\deg (\bar{f}(P_i)) = \deg (P_i) = p_i \).

Corollary: \(H_q[W] \): Hecke algebra of fin. Coxeter gp \(W \) with \(q \in \mathbb{C} \)

\[\cong C[W] \] provided \(q \) is not a root of \(\text{Disc} (H_q[W]) \)

(i.e. if \(H_q[W] \) is semisimple)

\[H_{q_1}[W] \overset{f^1}{\cong} C[W] \] using \(\text{spec. } f^1: q \mapsto q_1 \).

\[H_{q_2}[W] \overset{f_2}{\cong} H_q[W] \] using \(\text{spec. } f_2: q \mapsto q_2 \).

And \(H_{q_1}[W]/\text{Frac}(\mathbb{C}q_1) \) separable, \(\mathbb{C}[W], H_q[W] \) separable,

so all have same invariants by Titi's deformation theorem.

and this determines algebra/alg. closed field \(\mathbb{C} \) by Artin–Wedderburn.

Corollary of Tite's theorem: (Preserving notation so that A^K, A^F
Separable alg. R: int. closure of R in K.
and $\overline{f}: \overline{R} \to \overline{F}$ extension of "spec" hom $f: R \to F$.)

μ: irreducible character of A^K.

Then $\mu_{\overline{f}} : A^F \to F$ defines a character of A^F

\[a_i \mapsto \overline{f}(\mu(a_i)) \]
(by extending linearly from map on basis $a_i, \overline{a_i}$)

and $\mu \leftrightarrow \mu_{\overline{f}}$ is a bijection from $\text{Irr}(A^K)$
to $\text{Irr}(A^F)$

If: Key lemma (3) gave every irreducible char. as

\[\mu = \sum \xi_i a_i, \quad \mu \left(\sum \xi_i a_i \right) = \Psi_i(\mathbf{f}, \ldots, f_n) \quad \text{for any } \sum \xi_i a_i \in A^F \]

where this appeared as
next to highest coeff.
in irreducible factor $P_i(x)$
if $P(x)$.

Note that each of $P_i(x)$
were shown to be in $\overline{R}[X]$, so evaluating Ψ_i at (f_i, \ldots, f_n)
gives elt. of \overline{K}, so can apply \overline{f} to it.

Also showed $\overline{f}(P_i(x))$ is monic irreducible factor of $P_f(x)$, the char.
poly. of
thus again $-\overline{f}(\Psi_i) \in F'$ appears as next to
highest coeff. in factor $\overline{f}(P_i(x))$ and using (3) of
lemma, it again gives character.