Character theory for semisimple algebras (e.g., $\mathbb{C}[W]$, $H_\theta[W]$)

Given algebra A, module V, so have rep'n $T: A \to \text{End}(V)$
then the character of V is just $\text{Tr}: a \mapsto \text{Tr}(T(a))$
$A \to F$: underlying field.

Remember two representations are isomorphic (or "similar")

if given $T: A \to \text{End}(V)$, $S: A \to \text{End}(W)$
f: $V \to W$

such that $T(a) = f^{-1}S(a)f$ \forall $a \in A$. Write $T \simeq S$ (or sometimes $V \simeq W$ if understood as modules)

First Fact: If T,S rep's of semisimple alg. A/F, char$(F) = 0$,
then $T \simeq S \iff \text{Tr}(T(a)) = \text{Tr}(S(a))$ \forall $a \in A$

"characters are equal"

If: (\Rightarrow) if $T \simeq S$ then matrix $T(a)$ and matrix $S(a)$ are similar,
hence have same trace.

<= if $\text{Tr}(T(a)) = \text{Tr}(S(a))$ \forall $a \in A$,
write A semisimple $= A_1 \times \cdots \times A_s$
A_i: simple algebraic.

$\text{Mat}_{n_i}(D_i)$
p-dimensional single simple module with single simple module V_i with entries in D_i

(*) if V,W are left A-mods, $f: V \to W$ homom of left A-mods

means $f(\lambda v) = \lambda f(v)$ \forall $\lambda \in A$, $v \in V$.

For emphasis, write $f(\lambda T(a)v) = S(a) \cdot f(v)$

so if $f: \text{hom}$
$V \to W$, $T(a)v = f^{-1}S(a) \cdot f(v)$
pf of \((\leq)\) in First Fact (continued):

consider \(e_i = (0, \ldots, 0, 1, 0, \ldots, 0)\) 1 : unit in \(A_i\)

if \(A = A_1 \times \cdots \times A_s\) then \(1\) in \(A = e_1 + e_2 + \cdots + e_s\)

and \(e_i\) acts on \(e_j\) of \(A\) as projection to \(i^{th}\) factor \(A_i\).

\(e_i^2 = e_i\) and \(e_i e_j = 0\) unless \(i = j\) (orthogonal idempotents)

Also \(a \cdot e_i = e_i \cdot a\) for all \(a \in A\), \(i \in [1, s]\) so \(e_i\)'s central.

Such an expression \(1 = e_1 + \cdots + e_s\) is called "central decomposition of identity"

(in fact there's a bijection between decompositions of \(A\) into direct products and central decomp. of identity)

Now write \(V \cong M_1 \oplus \cdots \oplus M_s\) with \(M_i : A_i\)-modules

\(\cong \bigoplus_{i \in I} V_i \cong \bigoplus_{i \in I} M_i V_i\)

\(\cong m_1 V_1 \oplus \cdots \oplus m_s V_s\)

similarly \(W \cong n_1 V_1 \oplus \cdots \oplus n_s V_s\).

We want to show \(m_j = n_j\) \(\forall j \in [1, s]\).

But \(\text{Tr}(T(e_i)) = m_i [V_i : \mathbb{K}]\) and \(\text{Tr}(S(e_i)) = n_i [V_i : \mathbb{K}]\).

By assumption, traces are equal, so \(m_i = n_i\) \(\forall i\) and hence

(in fact, proof shows only need traces = on center) \(V \cong W\).

Now let's construct some representations of Coxeter groups...
In \mathbb{R}^2, regular m-gon with a vertex at $(0,0)$ about origin

its group of rotations/reflects = \[W = \bigoplus_{k} \text{clockwise rotations about angle } 2\pi k/m, \text{ } k \in [0,m), \]
m reflections in hyperplanes orthogonal to \[e_k = (\cos \frac{k\pi}{m}, \sin \frac{k\pi}{m}) \]

order of $W = 2m$

\[= \langle R : \text{rotation in } 2\pi/m, \text{ } S_0 : \text{reflection in hyperplane } \perp e_0 \rangle \]

as matrices

\[R = \begin{bmatrix} \cos (2\pi k/m) & -\sin (2\pi k/m) \\ \sin (2\pi k/m) & \cos (2\pi k/m) \end{bmatrix}, \quad S_0 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \]

(acting on right $R \in R^2$)

Also present it as $\langle S_0, S_1 \rangle$ where $S_1 : e_{m-1} \mapsto -e_{m-1}$

in this basis $\{e_0, e_{m-1}\}$, the mats. are

\[S_0 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \quad S_1 = \begin{bmatrix} 1 & 2\cos(\pi/m) \\ 2\cos(\pi/m) & 1 \end{bmatrix} \]

S: finite (index) set. Matrix $(C_{s,t}) = C$ with real entries

is a Cartan matrix if the following are satisfied:

1. if $s \neq t$ then $c_{s,t} \leq 0$, $c_{s,t} \neq 0 \iff c_{t,s} \neq 0$.

2. $c_{s,t} = 2 \forall s \in S, s \neq t$, \[c_{s,t} c_{t,s} = 4 \cos^2 \left(\frac{\pi}{m_{st}} \right) \]
 with $m_{st} \in \mathbb{Z}_{\geq 2} \cup \{0\}$.
Calculate \(4 \cos^2 \left(\frac{\pi}{m_{s,t}} \right) \) with \(m_{s,t} = 2, 3, \ldots \)

<table>
<thead>
<tr>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>\ldots</th>
<th>\infty</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>\frac{3\sqrt{5}}{2}</td>
<td>\ldots</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ugly, can show with little trick that

\(2, 3, 4, 6, \ldots \) only values for which

\(c_s, c_t, c_{s,t} \in \mathbb{Q} \).

Given Cartan matrix \(C = (c_{s,t})_{s,t \in S} \)

\(V \): vector space with basis \(\{ d_s \mid s \in S \} \)

\(GL(V) \): endom. of \(V \) (\(|S| \times |S| \) matrices with entries in \(\mathbb{R} \))

\(v, w \in V \) write \(v \circ w \).

Define action \(s: V \rightarrow V \)

\[d_t \mapsto d_t - c_{s,t} d_s \quad (s, t \in S) \]

Easy lemma:

\[d_s \cdot s = -d_s \quad (c_s, s = 2) \]

\[\text{Tr}(s) = |S| - 2 \]

\[s^2 = \text{id} \circ (V \circ V) \]

so \(s \) is diagonalizable autom. of \(V \) with \(|S|-1 \) e-values = +1

1 e-value = −1.

Finally, let \(W = \langle s \rangle \subset GL(V) \)

\[\{ d_s \circ w \mid w \in W, s \in S \} = \Xi : \text{root system} \subset V \]. (invariant under \(W \) by def)

Thm: \(W \) has a presentation as Coxeter gp.:

\[\langle s \in S \mid s^2 = 1, (st)^{m_{s,t}} = 1 \text{ if } m_{s,t} < \infty \rangle \]