On Friday, we were analyzing possible factorizations in:

\[L \triangleleft \mathbb{Q} \]

Proposition: \([L : K] = \sum_{i=1}^{r} e_i f_i \) where \(f_i = \text{residual degree} = [\Omega / \Phi_i : \Omega / \Phi] \)

If: CKT then \(\Omega / \Phi \Omega_L = \bigoplus_{i} \Omega / \Phi_i \Omega_L \)

Main Thm.: Write \(L = K(\theta) \) with \(\theta \in \Omega_L \), min. poly \(\phi_\theta(x) \in \Omega_K[x] \).

For almost all primes \(\mathfrak{p} \), we have following correspondence:

If \(\overline{\phi_\theta(x)} = \overline{\phi_1(x)}^{e_1} \ldots \overline{\phi_r(x)}^{e_r} \) in \(\Omega_K/\mathfrak{p} \), then

\[\mathfrak{p} = \mathfrak{p}_1^{e_1} \ldots \mathfrak{p}_r^{e_r} \] as \(\Omega_L \)-ideals

where \(\mathfrak{p}_i = \mathfrak{p} \Omega_L + \phi_i(x) \Omega_L =: \langle \mathfrak{p}, \phi_i(x) \rangle \) with \(\phi_i \) = monic in \(\Omega_K \)

and \(f_i \) def \([\Omega / \phi_i : \Omega / \mathfrak{p}] = \deg(\overline{\phi_i}) \).

Remark: This theorem holds without exception (as we will prove) if

\(\Omega_L = \Omega_K[\theta] \) where \(L = K(\theta) \).

Example: \(L = \mathbb{Q} \left(\sqrt{d} \right) \) \(d \equiv 2, 3 \pmod{4} \) then \(\Omega_L = \mathbb{Z}[\sqrt{d}] \) so by

remark, theorem applies. To determine how \(p \) factors, to all \(p \neq 2,3 \)

analyze \(x^2 \equiv -d \pmod{p} \). This factor if \(d \) is a residue mod. \(p \).

(see p. 43 of notes for more here...)
For (b), use similar arguments to before: Consider the chain

\[\mathcal{O}_L \supset \mathfrak{p}_1 \supset \mathfrak{p}_2 \supset \cdots \supset \mathfrak{p}_\ell. \]

We know \(\mathcal{O}_L / \mathfrak{p}_i \) is \(\mathfrak{f}_i \)-dim'\(\mathfrak{v} \)-dimensional vector space over \(\mathcal{O}_K / \mathfrak{p}_i \); this is defin. of \(\mathfrak{f}_i \).

But there's no proper ideal between \(\mathfrak{p}_i \) and \(\mathfrak{p}_{i+1} \), so \(\mathfrak{p}_i / \mathfrak{p}_{i+1} \) is 1-dim'\(\mathfrak{v} \)-dimensional over \(\mathcal{O}_K / \mathfrak{p}_i \), so also has \(\mathfrak{f}_i \)-dim'\(\mathfrak{v} \)-dimensional over \(\mathcal{O}_K / \mathfrak{p}_i \).

Dividing through by \(\mathfrak{p}_i \), and adding it up for each quotient, we get \(\mathfrak{f}_i \) as degree of \(\mathcal{O}_L / \mathfrak{p}_i \).

Main Theorem

Proof: Suppose \(\mathcal{O}_L = \mathcal{O}_K[\theta] \). Then we claim finitely many exceptions.

\[\mathcal{O}_L / \mathfrak{p}_\mathcal{O}_L \cong \mathcal{O}_K / \mathfrak{p}_K[\theta] / \bar{\mathcal{O}}_\mathcal{O}(x). \]

Indeed we have surjective map \(\mathcal{O}_K[\theta] \twoheadrightarrow \mathcal{O}_K / \mathfrak{p}_K[\theta] / (\bar{\mathcal{O}}_\mathcal{O}(x)) \) with kernel \(< \mathfrak{p}, \phi_\mathcal{O}(x) > \), and

isomorphism follows since \(\mathcal{O}_L = \mathcal{O}_K[\theta] \cong \mathcal{O}_K[\theta] / (\phi_\mathcal{O}(x)) \)

It is explicitly realized as \(f(\theta) \mapsto f(x) \).

Given info about \(\mathcal{O}_K / \mathfrak{p}_K[\theta] / \bar{\mathcal{O}}_\mathcal{O}(x) \): know \(\bar{\phi}_\mathcal{O}(x) = \bar{\phi}_1(x) \cdots \bar{\phi}_r(x) \).

So C.R.T implies:

\[\mathcal{O}_K / \mathfrak{p}_K[\theta] / (\bar{\mathcal{O}}_\mathcal{O}(x)) \cong \bigoplus_{i=1}^{r} \mathcal{O}_K / \mathfrak{p}_K[\theta] / (\bar{\phi}_i(x) \mathfrak{e}_i) \]

so that prime ideals of \(\mathcal{R} \) are the \(\bar{\phi}_i(x) \mod \bar{\mathcal{O}}_\mathcal{O}(x) \). Moreover...
\[\frac{R}{(\overline{\Phi}_i)} : \frac{\Theta_k}{\Theta_0} = \deg(\overline{\Phi}_i) \] and in \(R \),

\[(0) = (\bigcap_{i=1}^r \overline{\Phi}_i(x)) = \bigcap_{i=1}^r (\overline{\Phi}_i)_{e_i} \]

Transforming these conclusions to \(\Theta_k/\Theta_0 \) via \(f(x) \rightarrow f(\Theta) \) isomorphism

If prime ideals \(\overline{\Phi}_i \) of \(\Theta_k/\Theta_0 \) in bijection with \((\overline{\Phi}_i)_{e_i} \)

They are principal ideals generated by \(\phi_i(\Theta) \mod \Theta_0 \).

Let \(\Phi_i \) be their preimage under \(\Theta_k \rightarrow \Theta_k/\Theta_0 \)

so \(\Phi_i = \Theta_0 + \phi_i(\Theta) \Theta_k \). These are precisely the ideals containing \(\Theta \) in \(\Theta_k \).

\[\text{degree} \left[\frac{\Theta_k/\Theta_0}{\Phi_i} : \frac{\Theta_k}{\Theta_0} \right] = \deg(\Phi_i) \]

\[\frac{\Theta_k}{\Phi_i : \Theta_k/\Theta_0} \]

It remains to show \(\Theta = \Phi_1 e_1 \cdots \Phi_r e_r \) with \(\Phi_i = \Theta_0 + \phi_i(\Theta) \Theta_k \).

But \((0) = \bigcap_{i=1}^r \Phi_i \) and \(\Phi_i = (\Phi_i)_{e_i} \) so \(\bigcap_{i=1}^r \Phi_i = \Theta_0 \).

\[\Rightarrow \frac{\Theta_0}{\bigcap_{i=1}^r \Phi_i} \]

But by previous prop., \(\sum_{i} e_i(\Phi_i) = n \)

(as product is smaller ideal than intersection)

so this must be equality.

in number analogy, product of ideals is ideal gen. by product
intersection is ideal gen. by lcm.
Example: \(k = \mathbb{Q}(\sqrt[3]{2}) \), so \(\mathcal{O}_k = \mathbb{Z}[\sqrt[3]{2}] \) with \(\varphi_{\sqrt[3]{2}}(x) = x^3 - 2 \).

Analyze \(x^3 - 2 \pmod{p} \). E.g. \(\pmod{5} \):

\[
x^3 - 2 \equiv (x-3)(x^2+3x-1) \pmod{5}
\]

So \(5 \cdot \mathcal{O}_k = g_1 g_2 \) with \(g_1 \) having inertia \(\deg 1 \)

\(g_2 \) having inertia \(\deg 2 \).

In proof of Main Theorem, we assumed \(\mathcal{O}_L = \mathcal{O}_k[\vartheta] \). Didn't need this.

Just needed that \(\mathcal{O}_L / g_0 \mathcal{O}_L \cong \mathcal{O}_k[\vartheta] / g \mathcal{O}_k[\vartheta] \).

This will be true for almost all primes \(g \). To give precise condition,

define the conductor of ring \(\mathcal{O}_k[\vartheta] \):

\[\text{Nagel ideal } f \text{ in } \mathcal{O}_L \text{ contained in } \mathcal{O}_k[\vartheta], \text{ i.e.} \]

\[f = \{ \alpha \in \mathcal{O}_L \mid \alpha \cdot \mathcal{O}_L \subseteq \mathcal{O}_k[\vartheta] \} \]

Claim: If \(g \) is relatively prime to \(f \), then \(\mathcal{O}_L / g \mathcal{O}_L \cong \mathcal{O}_k[\vartheta] / g \mathcal{O}_k[\vartheta] \) (as \(\mathcal{O}_L \) ideals)

Proof: \(g, f \) relatively prime means \(g \mathcal{O}_L + f = \mathcal{O}_L \)

Since \(f \in \mathcal{O}_k[\vartheta] \), then \(\mathcal{O}_L = g \mathcal{O}_L + \mathcal{O}_k[\vartheta] \) so

map \(\mathcal{O}_k[\vartheta] \rightarrow \mathcal{O}_L / g \mathcal{O}_L \) is surjective with kernel \(g \mathcal{O}_L \cap \mathcal{O}_k[\vartheta] \)

then \(g \mathcal{O}_L \cap \mathcal{O}_k[\vartheta] = (g + f)(g \mathcal{O}_L \cap \mathcal{O}_k[\vartheta]) \)

\[= g \mathcal{O}_k[\vartheta] \]

since \((g, f \cap \mathcal{O}_k) = 1 \)
pf of corollary: As before, \(L = K[\theta] \) with minimal polynomial \(\phi_\theta(x) \).

(coeffs in \(\Omega_K \))

Consider \(d(1, \theta, \ldots, \theta^{n-1}) \) (supposing \(\deg(\phi_\theta) = n = [L : K] \)).

We chased earlier \(d(1, \ldots, \theta^{n-1}) = \prod_{i<j} (\theta_i - \theta_j)^2, \quad \theta_i = \tau_i(\theta) \) d is an elt. of \(\Omega_K \).

\(\Rightarrow d \) is the classical disc. of \(\phi_\theta \).

\[d \] records whether poly. has multiple roots.

\[\phi_\theta \]

and similarly \(\overline{d} \pmod{\mathfrak{g}} \), i.e. as elt. of \(\Omega_K / \mathfrak{g} \) records whether \(\overline{\phi_\theta} \pmod{\mathfrak{g}} \) has multiple roots.

But previous theorem, which applies if \(\mathfrak{g} \) doesn't divide conductor,

\[\overline{d} \not\equiv 0 \pmod{\mathfrak{g}} \implies e_i's \text{ all } 1. \]

So, at the moment, our condition is that \(\mathfrak{g} \) is unramified if \(\mathfrak{g} \)

doesn't divide conductor nor discriminant.

Remark 1: Neukirch also asks that \(\Omega_L / \Omega_i / \Omega_K / \mathfrak{g} \) is a separable

extension in his def's of unramified.

This is true since all extensions of finite fields are separable.

Remark 2: Sharper condition on ramification (to be proved later)

Define \(\text{disc}(\Omega_L) := \text{ideal generated by } d(d_1, \ldots, d_n) \)

where \(d_1, \ldots, d_n \) is any basis for \(L/K \)

prime divisors of \(\text{disc}(\Omega_L) \) are

exactly the ramified ones.

primes dividing \(\text{disc}(\Omega_L) \) are
Recall that we may attach "Legendre symbol" for a mod p with $(a,p)=1$ as follows:

\[\left(\frac{a}{p} \right) = a^{\frac{p-1}{2}} \pmod{p} \]

It is multiplicative char. \(\mathbb{Z}/p\mathbb{Z}^* \to \{\pm 1\} \), so we have natural extension to arbitrary integers (positive):

\[\left(\frac{a}{n} \right) = \left(\frac{a}{p_1} \right)^{e_1} \cdots \left(\frac{a}{p_r} \right)^{e_r} \]

Either satisfies a reciprocity law.

For the Legendre symbol,

\[\left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \]

if p,q distinct odd primes.

For Jacobi symbol, same for odd, coprime integers m,n.

In addition, we have supplementary laws:

\[\left(\frac{-1}{p} \right) = (-1)^{\frac{p-1}{2}} \quad \left(\frac{2}{p} \right) = (-1)^{\frac{p^2-1}{8}} \]

i.e. depends on congruence mod 4.

In context of factoring in quadratic extension:

A.R. \Rightarrow we can characterize factorization of almost all primes in quadratic extension using congruence conditions mod d.