Recall that a Euclidean domain is a domain with Euclidean algorithm. That is, a norm function N on domain $\mathcal{O} \setminus \{0\} \to \mathbb{N}_0$

s.t.

(i) $N(b) \leq N(ab) \forall a,b \in \mathcal{O} \setminus \{0\}$

(ii) $a = qb + r$ for some $q,r \in \mathcal{O}$, with $N(r) < N(b)$ or $r = 0$.

Using $N(a) := a \overline{a}$ on $\mathbb{Z}[i]$, then (i) is clear from multiplicative
and fact that $N(w) = 0 \Rightarrow w = 0$.

(ii) follows b/c $\mathbb{Z}[i]$ is square lattice in \mathbb{C}.

We must show $\exists q \in \mathbb{Z}[i]$ s.t.

$$\left| \frac{a}{b} - q \right| < 1$$

since $N(a) = |a|^2$.

But $\frac{a}{b} \in \mathbb{C}$ is always at most $\frac{\sqrt{2}}{2}$ from lattice point (i.e. < 1)

Finally recall that Euclidean domains are UFDs. (converse is false)

This is immediate from the existence of norm function.

Given ideal \mathfrak{a}, pick elt. $a \in \mathfrak{a}$ of minimal norm. This must be generator. Else $\exists b$ with $b = q \cdot a + r$ with $0 < N(r) < N(a)$ contradicting the minimality of a, so \mathfrak{a} is a P.I.D.

But P.I.D.s are U.F.D.s:

show that P.I.D.s satisfy (A) divisor chain condition (no infinite sequence of proper divisibility of elts)

\Rightarrow factorization exists

(B) every irreducible (no proper factors) is prime ($p | ab \Rightarrow p | a$ or $p | b$)

\Rightarrow factorization unique

(A) follows b/c given $(a_1) \subseteq (a_2) \subseteq \ldots$ then $U(a_i)$ is ideal $(d) \Rightarrow d | (a_i)$ for some d

so $(am) \subseteq (an) \subseteq \ldots \subseteq (am)$ \Rightarrow $m \geq n$. chain stabilizes!
If \(p \) is irreducible and \(p \mid ab \) but \(p \nmid a \), show \(p \mid b \).

\(p \) irreducible means \(\# \) ideal \(I \) s.t. \(\theta I = \mathbb{Z}[\frac{1}{p}] \).

Now \(p \nmid a \) means \(a \not\in (p) \) so \((p,a) \not= (p) \Rightarrow (p,a) = (1) \).

Then we can find \(u,v \in \mathbb{Z} \) s.t. \(up + va = 1 \).

\[\Rightarrow \] \(upb + vab = b \) but since \(p \mid ab \), \(p \) must divide \(b \). \(\square \)

So putting it all together, \(p \equiv 1 \pmod{4} \) \(\iff \) \(p = a^2 + b^2 \) for some \(a, b \in \mathbb{Z} \)

or \(p = 2 \)

and key step was understanding that \(p \equiv 1 \pmod{4} \) \(\Rightarrow \) then \(p \) not prime in \(\mathbb{Z}[i] \).

Let's collect what we've learned about \(\mathbb{Z}[i] \) so far:

- \(\alpha \in \mathbb{Z}[i] \) is unit \(\iff \) \(N(\alpha) = 1 \) i.e. \(\alpha = a + bi \) with one of \(a \) or \(b \) \(\iff \) \(a^2 + b^2 = 1 \) other \(= 0 \).

Quickly check that units are \(\xi, \bar{\xi}, -1, i, -i \).

- What are primes? Note: report everything up to units.

Won't always require such a specific characterization...
Theorem: The primes \(\pi \) of \(\mathbb{Z}[i] \) are:

1. \(\pi = 1+i \)
2. \(\pi = a+bi \) with \(a^2+b^2 \) squarefree, \(\rho \equiv (4), \quad \frac{a}{\pi} > |b| \geq 0 \).
3. \(\pi = p \), rational prime \(\equiv 3 \pmod{4} \).

- First show all these are indeed primes of \(\mathbb{Z}[i] \). Later show this exhausts all primes.

Recall that for any elt. \(\pi \in \mathbb{Z}[i] \), if \(\pi = \alpha \cdot \beta \), then \(N(\pi) = N(\alpha) \cdot N(\beta) \).

In cases (1) + (2), \(N(\pi) = p \) so \(\alpha \) or \(\beta \) must be unit, i.e. \(\pi \) prime.

In case (3) \(p^2 = N(\alpha) \cdot N(\beta) \) so \(p = N(\alpha) = N(\beta) = a^2+b^2 \) if \(d = a+bi \).

Now show all primes \(\pi \in \mathbb{Z}[i] \) are in the above list:

\[N(\pi) = \pi \cdot \bar{\pi} \text{ from unique fact. in } \mathbb{Z} \]

\(\pi, \bar{\pi} \) prime, not nec. distinct.

\(\pi \cdot \bar{\pi} \) so \(\pi \) divides some \(\pi_i \), call it \(\rho \) so \(N(\pi) = p^2 \).

i.e. \(N(\rho) = p \) or \(p^2 \). Just use earlier analysis.

- If \(N(\pi) = p \) and \(\pi = a+bi \) then \(p = a^2+b^2 \), so in case 1 or 2.
- If \(N(\pi) = p^2 \) then \(\rho \) is Gaussian integer with norm 1 and \(\rho \equiv (4) \pmod{4} \) in this case since if \(p=2 \) or \(p \equiv 1 \pmod{4} \).

then \(p = a^2+b^2 \) for some \(a, b \in \mathbb{Z} \) by Fermat's theorem.

\(= (a+bi)(a-bi) \Rightarrow p \text{ not prime } \).
The theorem makes clear how primes \(p \in \mathbb{Z} \) decompose in \(\mathbb{Z}[i] \).

- If \(p \equiv 1 (4) \) then \(p = (a+bi)(a-bi) \), "p splits" into two conjugate prime factors.

- If \(p \equiv 3 (4) \) then \(p \) remains prime ("inert") factors.

- If \(p = 2 \), then \(p = (1+i)(1-i) = -i(1+i)^2 \) so equal to the square of a prime (up to unit) \(p \) "ramifies" (infinitely many primes split, inert, finitely many primes ramify).

How to begin studying the problem in general?

Define analogue of Gaussian integers (subring of \(\mathbb{Q}(i) \)) for any number field. Naive guess: pick basis of \(\mathbb{Q}(i)/\mathbb{Q} \) and consider instead \(\mathbb{Z} \)-linear combinations.

Better (basis-free) definition:

View \(\mathbb{Z}[i] \) as \(\{ \alpha \in \mathbb{Q}(i) \mid \alpha \text{ is root of monic poly.} \} \) with coeffs. in \(\mathbb{Z} \).

[In this example, it is of form \((x^2 + ax + b = 0) \) \(a, b \in \mathbb{Z} \).]

Check: \(\alpha = c + di \), \(c, d \in \mathbb{Z} \)

then \(\alpha \) is root of \(x^2 + ax + b \) with \(a = -2c \), \(b = c^2 + d^2 \)

if \(c, d \in \mathbb{Z} \) then \(a, b \in \mathbb{Z} \).

if \(a, b \in \mathbb{Z} \) then a priori, just \(2c, 2d \in \mathbb{Z} \). But \((2c)^2 + (2d)^2 = 4b \equiv 0 (4) \).
since squares are always $0,1$ (4), must have $(2c)^2 \equiv (2d)^2 \equiv 0$ (4)

$\Rightarrow c, d \in \mathbb{Z}$. //

Make this some definition over arbitrary field. Then differs in general from \mathbb{Z}-basis, of course, but gives satisfactory theory.

Note: not even immediately clear that these elts form subring.

Check this next -- using a bit of linear algebra. (i.e. need alternate characterization of integrality, rather than producing poly. for which a, b is root)

In what follows, work in arbitrary ring (comm. with unit)

Row-Column Expansion: (Prop. 2.3 in Neukirch)

\[A = (a_{ij}) \text{ be } r \times r \text{ matrix with entries } a_{ij} \text{ in arb. ring.} \]

\[A^* = (a^*_{ij}) \text{ "adjoint matrix" with } a^*_{ij} = (-1)^{i+j} \det(A^{(ij)}) \]

\[\text{Then } AA^* = A^*A = \det(A) \cdot I_r \]

\[(\text{Cor: } A \cdot x = 0 \Rightarrow \det(A) \cdot x = 0) \]

for any vector \(x = (x_1, \ldots, x_r) \)

Now we can prove: if \(A \subseteq B \) is an extension of rings

then \(\mathcal{A} b_1, \ldots, b_n \) integral over \(A \) (satisfy monic poly. with coeef in \(A \))

\[\langle \text{d} \rangle \quad A [b_1, \ldots, b_n] \text{ is a finitely generated } A \text{-module.} \quad (\text{Prop. 2.2 in Neukirch}) \]

Cor: if \(b_1, \ldots, b_n \in B \) are integral over \(A \), so is any elt in \aabbn

\[A [b_1, \ldots, b_n] \]

If of cor: if \(b \in A [b_1, \ldots, b_n] \), then \(A [b_1, \ldots, b_n] = A [b, b_1, \ldots, b_n] \)

is a fin. gen. \(A \)-module. /
Proof of Proposition 2.2: Let $b \in B$ be integral over A and f a monic polynomial with $f(b) = 0$. Show $A[b]$ is finitely generated.

If $\deg(f) = n$, then any $g \in A[x]$ written as

$$g(x) = g(x) \cdot f(x) + r(x)$$

with $\deg(r) < n$.

Then $g(b) = r(b) = a_0 + a_1 b + \ldots + a_{n-1} b^{n-1}$ (poly of $\deg < n$ coefts in A)

i.e. any polynomial in b expressible in terms of b, b^2, \ldots, b^{n-1}.

In the case $(b_1, \ldots, b_n \text{ integral over } A \Rightarrow A[b_1, \ldots, b_n]$ f-gen.)

now follows by induction.

For converse, let $\omega_1, \ldots, \omega_r$ be generators for $A[b_1, \ldots, b_n]/A$

Then for any $b \in A[b_1, \ldots, b_n]$,

$$b \omega_i = \sum_{j=1}^{n} a_{ij} \omega_j \quad a_{ij} \in A \quad (*)$$

Using row-column expansion prop: Let $M = \text{matrix } b \cdot I_n - (a_{ij})$

Then $M \cdot (\omega_1 \ldots \omega_n) = 0$ by construction.

$$\det (b \cdot I_n - (a_{ij})) \cdot \omega_i = 0 \quad \forall i.$$

Since ω_i's generators, then

$$1 = c_1 \omega_1 + \ldots + c_r \omega_r$$

$$\Rightarrow \det (b \cdot I_n - (a_{ij})) = 0$$

so b is a root of the monic poly. $\det (x \cdot I_n - (a_{ij}))$.