Let \(D \) be a 1-dimensional Noetherian domain, then make \(\text{Spec}(D) =: X \) into a topological space by defining the closed sets \(\mathfrak{p} \) for prime \(\mathfrak{p} \geq \mathfrak{a} \) for any ideal \(\mathfrak{a} \) in \(D \).

For applications to arithmetic, too coarse. Consider pair \((X, O_X)\) where

\[O_X = \text{the sheaf of rings given by} \]

\[\mathcal{F} : U \rightarrow \mathcal{O}(U) = \{ f \mid g \equiv 0 \pmod{\mathfrak{p}} \forall \mathfrak{p} \in \mathfrak{a} \} \]

open, non-empty

"structure sheaf on \(\text{Spec}(D) = X \)" together with natural map

\[\mathcal{O}(U) \rightarrow \mathcal{O}(V) \]

if \(V \subseteq U \) (if \(g \equiv 0 \pmod{\mathfrak{p}} \forall \mathfrak{p} \in \mathfrak{a} \))

induced by projection \(\mathfrak{p} \rightarrow \mathfrak{p} \cap \mathfrak{a} \).

Terminology for sheaves:

- elements in ring \(\mathcal{F}(U) \) are "sections" — def. of sheaf is that these sections are well behaved with respect to any open covering of open set \(U \).

"stalk" at a point \(x \in X \):

\[F_x := \lim_{U \ni x} \mathcal{F}(U) \]

so elements of stalk are equivalence classes of sections

\[S_U \sim S_V \text{ if we can find } W \supseteq U \cap V \text{ with } x \in W \]

s.t. \(S_U \mid_W = S_V \mid_W \) (i.e. apply restriction map to \(W \))

call these "germs" of sections at \(x \).

Fact: stalk of \(O_X \) at \(\mathfrak{p} \) is \(\mathcal{O}_{\mathfrak{p}} \).

(follows from definition. \(U = X \setminus \{ \mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_n \} \forall \mathfrak{p}_i \) any \(j \) and \(\mathcal{O}_{\mathfrak{p}} = \{ f \mid g \equiv 0 \pmod{\mathfrak{p}} \} \) with natural inclusion \(\mathcal{O}(U) \rightarrow \mathcal{O}_{\mathfrak{p}} \).
Example 1: If \mathcal{O} is DVR, then $\text{Spec}(\mathcal{O}) = \{ \mathfrak{m}, (0) \}$ is unique maximal ideal.

\mathfrak{m} - closed pt., (0) - generic point.

not closed, its closure is total space $X.$

So closed sets: $\emptyset, \{ \mathfrak{m} \}, X \Rightarrow$ open sets: $X, (0), \emptyset.$

and "functions" on \mathcal{O} are elements f with "values" $f \mod \mathfrak{m}, f \in \text{Frac}(\mathcal{O})$.

Example 2: If \mathcal{O} is Dedekind domain, $\text{Spec}(\mathcal{O}) = \{ \mathfrak{p} \mid \mathfrak{p} \text{ prime} \}$.

Now $\mathcal{O}_{\mathfrak{p}}$ is a DVR with inclusion $\mathcal{O} \hookrightarrow \mathcal{O}_{\mathfrak{p}}$ with induced map

$f: X_{\mathfrak{p}} = \text{Spec}(\mathcal{O}_{\mathfrak{p}}) \rightarrow X = \text{Spec}(\mathcal{O})$.

Claim: f is morphism of affine schemes. Affine scheme is pair $(X = \text{Spec}(A), O_X : \text{structure sheaf})$.

Any homom. of rings $\phi: \mathcal{O} \rightarrow \mathcal{O}'$ induces map on prime ideals

$f: X' \rightarrow X$, continuous, and corresponding map

$\mathfrak{p}' \mapsto \phi^{-1}(\mathfrak{p}')$.

$f_{\mathcal{U}}^*: O(\mathcal{U}) \rightarrow O(\mathcal{U}')$ when $\mathcal{U}' = f^{-1}(\mathcal{U})$.

\[s \mapsto s \circ f|_{\mathcal{U}}. \]

with (1) for $V \subseteq \mathcal{U}$ open

\[O(V) \xrightarrow{f|_V^*} O(V'). \]

(2) for $\mathfrak{p}' \in \mathcal{U}' \subseteq X'$, and $a \in O(\mathcal{U})$

\[a(f(\mathfrak{p}')) = 0 \Rightarrow f_{\mathcal{U}}^*(a) \equiv 0 \mod \mathfrak{p}'. \]

i.e. $a \mod f(\mathfrak{p}') = 0$.

Not so easy to prove these properties!

Also can be shown all such morphisms are induced from homs. of rings.
with stalk at \mathfrak{p} in X equal to $\mathcal{O}_{\mathfrak{p}}$. "Germ of functions" in infinitesimal nbhd of \mathfrak{p}.

The set $\mathcal{M}_{\mathfrak{p}} = \{ f \in \mathcal{O}_{\mathfrak{p}} | f \neq 0 \}$ is not defined on nbhd. of \mathfrak{p} in X, which will contain other primes if X is not itself a local ring.

But any particular f/g has nbhd. on which it is defined.

in $\mathcal{O}_{\mathfrak{p}}$ (require that $\mathfrak{o} \in U$ s.t. $g \neq 0 \mod \mathfrak{p}$)

Claim: for an order \mathfrak{O}, then if \mathfrak{p} regular, so $\mathcal{O}_{\mathfrak{p}}$ DVR then curve non-singular.

But if $\mathfrak{O}_{\mathfrak{p}}$ not a DVR, where maximal ideal $\mathfrak{p}\mathcal{O}_{\mathfrak{p}}$ not generated by single elt., then \mathfrak{p} "singular"

Better to see from geometric setting, reason back to algebraic setting.

$C[x], C[x_1,y]/y^2 = x^2 + x$ are smooth, but $C[x_1,y]/y^2 = x^2 + x^2$ or $y^2 = x^2$ are singular.

Remember points on these varieties are max. ideals containing I: quotient ideal.

So $C[x] : (x-a) \mapsto a \in C$ $C[x_1,y]/E : (x-a, y-b) \mod E : y^2 = f(x) \mapsto (a,b) \in C^2 s.t. b^2 = f(a)$

Draw real locus: say of $b^2 = a^3$ or $b^2 = a^3 + a^2$.

\[\begin{array}{c}
\begin{array}{c}
\text{b} \\
\text{a}
\end{array} \\
\end{array} \]
To understand when these varieties are singular, Hartshorne would say analyze M/M^2 where M is maximal ideal of O_x in localization O_x

More precisely, we compute dimension of M/M^2 as O_x/M-vector space.

Then O is "non-singular" at x if $\dim_{O_x/M}(M/M^2) = \dim(O) = 1$.

(Atiyah-Macdonald tell us that, as a consequence of Nakayama's lemma, if x_i are basis for M/M^2 as O_x/M-vector space if M is O_x module, O local ring, then x_i generate M. So suffices to analyze M/M^2 to find gens. for M.)

Taking $M=M$ in above statement.

Look at the point $(0,0)$ in our three examples:

For each, consider ideal $(x-0, y-0)$ in $\mathbb{C}[x,y]/E$.

$M^2 = \langle x^2, y^2, xy \rangle$ so $x \equiv y^2 - x^3 \pmod{E}; y^2 = x^3 + x \equiv 0 \pmod{M^2}$

so M/M^2 generated by y.

For other two examples, no relation mod M^2 on x or y.

But say $(1,1)$ is non-singular on $y^2 = x^3$ since $y-1 = \frac{1}{2} (x-1)^3 + \frac{3}{2} (x-1)^2 - \frac{1}{2} (y-1)^2 + \frac{3}{2} (x-1) \pmod{E}$

$\equiv \frac{3}{2} (x-1) \pmod{M^2}$