Return to setting of general field, K, and again use dichotomy of valuations — archimedean v. non-arch. — to study them.

If v with assoc. $1 \cdot v$ is non-archimedean then by 3 axioms for non-arch. valuation

know $\Theta = \{ x \in K \mid v(x) > 0 \} = \{ x \in K \mid |x|_v \leq 1 \}$

is subring of K with units

$\Theta^* = \{ x \in K \mid |x|_v = 1 \}$ and unique maximal ideal $\mathfrak{m} = \{ x \in K \mid |x|_v < 1 \}$

Moreover, Θ is integral domain (since it is) with field of fractions K

where either $x \in \Theta$ or $x^{-1} \in \Theta$.

"valuation ring"

Fact: Θ is integrally closed. Thus if $K = \# field$, then $\mathbb{Z} \subseteq \Theta_v$ so

$(\text{in } \text{Frac}(\Theta) = K)$

$v: \text{valuation (non-arch.)}$

$\therefore \Theta_K \subseteq \Theta_v$

pf: Any elt $x \in K$ integral satisfies monic equation over Θ

$x^n + a_1 x^{n-1} + \cdots + a_n = 0$ with $a_i \in \Theta$. Want to show $x \in \Theta$.

If not, then since Θ valuation ring, $x^{-1} \in \Theta$. But then

$x = -a_1 - a_2 x^{-1} - \cdots - a_n x^{-(n-1)} \in \Theta$. \(\triangleright\)

Examples:

$K = \mathbb{Q}$, $v \xrightarrow{} p$: prime, then $\Theta_{\mathbb{Q} v} = \mathbb{Z}(p) = \{ \frac{a}{b} \mid p \nmid b \}$

(similarly for $\#$ fields)

$K = \mathbb{Q}_p$, then $\Theta = \mathbb{Z}_p$.

localization at p.
Say that valuation is "discrete" if it admits smallest positive value \(m \).

Then the set of all possible valuations is \(m \mathbb{Z} \) for \(m \) of \(K \).
Always find equivalent valuation with \(m=1 \). ("normalized" valuations)

Note that sets \(0,0^\times,\mathfrak{p} \) are independent of representative in equivalence class.

Final Proposition: if \(v \) is discrete then valuation ring \(\mathcal{O}_v \) is P.I.D.

(so \(\mathcal{O}_v \) is discrete valuation ring) with \(g^n/g^{n+1} \cong \mathcal{O}_v/\mathfrak{p} \forall n \).

Moreover the chain of ideals \(0=\mathfrak{p}^2 \mathfrak{p}^2 \cdots \) form a basis of open nbhds of 0 in \(K \). \(\{ g^n = \{ x \in K | |x|_v \leq \frac{1}{g^n-1} \} \) if

\[1 \mathfrak{p} \mathfrak{p} \] give base of nbhds

of 1 in \(0^\times \).

Archimedean valuations: Given \(K \) field, any valuation \(v \), form completion \(\hat{K} \).

if \(v \) archimedean, not many choices for \(\hat{K} \).

Theorem (Ostrowski) \(K \) field, \(\hat{K} \) completion w.r.t. archimedean \(v \),

then there is an isomorphism \(\delta: \hat{K} \to \mathbb{R} \) or \(\mathbb{C} \)

such that \(|a|_v = |\delta(a)|_\infty \) \(\delta \) arch. on \(\mathbb{R} \) or on \(\mathbb{C} \) with \(\delta(0,1) \).
We may extend valuations to the completion just as for \(\Theta \), setting

\[
\hat{\nu} \text{ on } \hat{K} \text{ to be given by } \hat{\nu}(a) = \lim_{n \to \infty} \nu(a_n), \text{ if } a = \lim_{n \to \infty} a_n \text{ in } K, a \in \hat{K}
\]

"ultrametric" property \(\Rightarrow \hat{\nu}(a) = \nu(a_n) \) if \(n \geq n_0 \), some \(n_0 \).

Earlier we showed \(\mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}_p / p\mathbb{Z}_p \) and \(\mathbb{Z} / p^n\mathbb{Z} \cong \mathbb{Z}_p / p^n\mathbb{Z}_p \), \(n \geq 1 \).

and same proof works for general valuation rings \(R \leq \Theta = \text{val. ring of } \hat{K} \) with \(\mathfrak{p}, \mathfrak{q} \) resp. maximal ideals.

Proposition: \(\nu \) discrete valuation on \(K \) with valuation ring \(\Theta \) \(R \leq \Theta = \text{set of reps for } \Theta / \mathfrak{p} : \text{residue field } (0 \in R) \)

Then \(x \in \hat{K} \setminus \Theta \) has unique power series rep in \(\Theta \):

\[
x = \pi^m \cdot (a_0 + a_1\pi + \ldots) \quad a_i \in \mathbb{R}, a_0 \neq 0, m \in \mathbb{Z}
\]

(convergent power series as all formal power series are Cauchy)
in non-arch. case.

Example:

1. \(K = \mathbb{Q} \), \(\mathfrak{p} = \text{max. ideal for } \nu_p = p\mathbb{Z} \), just get usual

\(p \)-adic expansion in \(\Theta_p \):

\[
x = p^m (a_0 + a_1p + \ldots)
\]

2. \(K = \mathbb{F}_q((t)) \) with \(\Theta = \mathbb{F}_q[t] \) \(\mathfrak{p} = (t-a) \) \(a \in \mathbb{F}_q \)

then \(\hat{K} : \text{completion w.r.t. } (t-a) \) is "field of formal power series" \(\mathbb{F}_q((\mathfrak{p})) \)

consisting of formal Laurent series \(f(t) = (t-a)^m (a_0 + a_1t + \ldots) \)

There is even analogous result saying

\[
\Theta = \lim_{n \to \infty} \Theta / \mathfrak{p}^n \quad (\text{postpone for next time})
\]
Given a valuation over \(\hat{K} \), want to explain how to extend it to algebraic extension \(E | K \). Key tool: Hensel's Lemma.

A polynomial \(f(x) = a_0 + \cdots + a_n x^n \), \(a_i \in \mathcal{O} \): valuation ring of \(K = \hat{K} \).

is called "primitive" if \(f \not\equiv 0 \pmod{\mathfrak{p}} \). In terms of valuation, we could say \(|f| = \max \{ |a_0|, |a_1|, \ldots, |a_n| \} \).

Hensel's Lemma: if \(f \) primitive with

\[
\overline{f} = \overline{g} \cdot \overline{h} \pmod{\mathfrak{p}} \quad \overline{g}, \overline{h} \text{ rel. prime polys.}
\]

then \(f = gh \) in \(\mathcal{O}[x] \) where \(g, h \) polys with \(\deg(g) = \deg(\overline{g}) \)

\[
\deg(h) = \deg(\overline{h})
\]

and \(g \equiv \overline{g}, h \equiv \overline{h} \pmod{\mathfrak{p}} \).

Usual version of Hensel's Lemma:

if \(f(a) \equiv 0 \pmod{p}, \quad f'(a) \not\equiv 0 \pmod{p}, \quad a \in \mathbb{Z}_p, \quad f \in \mathbb{Z}_p[x] \)

then \(\exists \, \alpha \in \mathbb{Z}_p \) with \(f(\alpha) = 0 \) and \(\alpha \equiv a \pmod{p} \).

(idea: lift the solution to higher and higher powers of \(p \), making formal sense.)

Example: \(x^2 - 7 \) in \(\mathbb{Z}_3 \). so \(1 \) is sol'n in \(\mathbb{Z}/3\mathbb{Z} \)

How to lift it to sol'n mod \(9 \)? \(1 \) in \(\mathbb{Z}/9\mathbb{Z} \), not sol'n. Can lift to \((1 + 3k) \)

\(k = 0, 1, 2 \).

e.g. \((1 + 3) \) is lift to sol'n of \(x^2 - 7 \) in \(\mathbb{Z}/3^2\mathbb{Z} \)
as \(16 - 7 = 0 \pmod{9} \).

General recipe for accomplishing lift is version of Newton's method.
Newbold's version is slight generalization since, if \(a \equiv \theta \) has
\[f(a) \equiv 0 \mod \theta \] then we may write \(f(x) \equiv (x-a)h(x) \)
and condition that \(a \) is simple root (i.e. \(f'(a) \not\equiv 0 \mod \theta \))
guarantees that \((x-a)\) and \(h(x) \) are relatively prime \((\mod \theta)\).

proof of Hensel's lemma: \(d = \deg(f) \), \(m = \deg(g) \), \(\deg(h) \leq d-m \)

If \(g_0, h_0 \in \Theta[x] \) are polynomials s.t. \(g_0 \equiv g, h_0 \equiv h \pmod{\theta} \)
then since \(g, h \) assumed relatively prime,

\(f(a(x), b(x)) \in \Theta[x] \) with \(a \cdot g_0 + b \cdot h_0 \equiv 1 \pmod{\theta} \)

Consider coeffs. of \(f - g \cdot h_0 \) and \(a \cdot g_0 + b \cdot h_0 - 1 \) \(\in \Theta[x] \)

Take one with smallest valuation, call it \(\pi \) (if min val = \(\infty \), we're done)

Try to find desired \(g, h \) among \(g = g_0 + p_1(x) \cdot \pi + p_2(x) \cdot \pi^2 \)

\[h = h_0(x) + q_1(x) \cdot \pi + q_2(x) \cdot \pi^2 \]

with \(p_i \in \Theta[x] \), \(\deg(p_i) \leq m \)

\(q_i \in \Theta[x] \), \(\deg(q_i) \leq d-m \).

so that setting \(g_{n-1}(x) = g_0(x) + p_1(x) \cdot \pi + \ldots + p_{n-1}(x) \cdot \pi^{n-1} \)

then \(f \equiv g_{n-1} \cdot h_{n-1} \pmod{\pi^n} \)

Then, if this can be arranged, in limit as \(n \to \infty \), get \(f = g \cdot h \) \(\in \Theta[x] \)

(The ideal \((\pi^n) \subset \Theta^n \), in particular, so \((*) \) implies \(f \equiv g_{n-1} \cdot h_{n-1} \pmod{\pi^n} \))

Prove this for all \(n \) by induction.