Last time, trying to provide general definition for ring of integers of # field.

Given extension of rings $A \subseteq B$, say $b \in B$ is integral if it satisfies monic polynomial with coeffs in A. Call the entire ring B integral if all elts $b \in B$ integral. How to make such ring?

Given $A \subseteq C$, let $\overline{A} = \{ c \in C \mid c \text{ integral over } A \}$ "integral closure"

Our then last time: b, \ldots, b_n integral $\iff \overline{A}[b, \ldots, b_n]$ fin gen. A-module
ensured \overline{A} is a ring.

Define \mathcal{O}_K: ring of ints. of # field $K = \overline{\mathbb{Z}}$ in K (integral closure of \mathbb{Z} in K)

Note that if $A \subseteq B \subseteq C$ with C integral over B, B integral over A,
then C integral over A (owing to fin gen. module criterion)

\Rightarrow if \overline{A} is integral closure of A in B, then \overline{A} is "integreally closed" in B

i.e. $\overline{A} = \overline{\overline{A}}$.

Example: $K = \mathbb{Q}(\sqrt{d})$, d square-free ($\equiv 0 \pmod{4}$)

then $\mathcal{O}_K = \{ a + b \sqrt{d} \mid a, b \in \mathbb{Z} \}$ if $d \equiv 2, 3 \pmod{4}$

$= \{ a + \frac{b}{2} (1 + \sqrt{d}) \mid a, b \in \mathbb{Z} \}$ if $d \equiv 1 \pmod{4}$

How to prove this?

Exploit Galois symmetry!

pf: b: non-triv. elt. of $\text{Gal}(K/\mathbb{Q})$ \quad $\overline{\sqrt{d}} \to -\sqrt{d}$

$x \in \mathcal{O}_K$, then $b(x) \in \mathcal{O}_K \iff x + b(x), x \cdot b(x) \in \mathcal{O}_K$

so if $x = a + b \sqrt{d}$ then $x + b(x) = 2a$, $x \cdot b(x) = a^2 - db^2 \subseteq \mathbb{Q}$.

But \mathbb{Z} is integrally closed in \mathbb{Q} (all \mathbb{Q}-Ds closed in their field of fractions)

so in fact $2a, a^2 - db^2$ must be in \mathbb{Z}, also sufficient since x is

a root of $X^2 - 2ax + (a^2 - db^2) = 0$. Now just play with conditions to get result for d mod 4.
Turning to situations more tailored to our interests:

A: integral domain, \(K \) : field of fractions, \(L/K \) : finite extension which is integrally closed in \(L \)

B: integral closure of \(A \) in \(L \). (now know \(B \) is integrally closed (in \(L \))

1. Elts in \(L \) of form \(\beta = \frac{b}{a} \), \(b \in B \), \(a \in A \)

 because if \(a_n \beta^n + \ldots + a_1 \beta + a_0 = 0 \), \(a_i \in A \)

 (do this by clearing denominators for \(\beta \) with coeffs in \(K \))

 then \(a_n \beta \) is root of monic equation with coeffs in \(A \) (multi. by \(a_n^{-1} \))

 \(\beta \) is an integral over \(A \)

 i.e. \(\beta = \frac{b}{a_m} \). not just any polynomial

2. \(\beta \in L \) is integral over \(A \) \(\iff \) its minimal poly. \(p(x) \) has coeffs. in \(A \)

 \(\Rightarrow \):

 (if \(\beta \) is root of \(g(x) \), monic in \(A[x] \), then \(p(x) \mid g(x) \) in \(K[x] \)

 \(\Rightarrow \) zeros \(\beta_1, \ldots, \beta_n \) of \(p(x) \) are integral over \(A \)

 \(\Rightarrow \) coeffs of \(p(x) \) are integral over \(A \), but \(A \) integrally closed

 so coeffs in \(A \). \\

Want to define invariants of such rings analogous to the norm function for the Gaussian integers. Just need to think in basis-free way.

Given \(x \in L \) as above, define "translation" endomorphism \(T_x : \beta \mapsto \beta x \)

then we have natural invariants \(\text{Tr}_K(x) \), \(\det(T_x) \)

\(\text{Tr}_K(x) \) "trace of \(x \)" "norm of \(x \)" \(\text{Nuc}_K(x) \)
More generally, we have invariants for each coeff of char. poly.

\[\text{det} (t \cdot I_n - T_x) = t^n - a_1 t^{n-1} + \cdots + (-1)^n a_n \in K[t] \]

with \(a_1 \): trace \(a_n \): norm

(\text{viewing } L \text{ as } n\text{-dim} \text{ } \text{v.s.} / K, \text{ so endomorphism } T_x \text{ presented in } K\text{-coords})

Of course, since trace is additive and det is multiplicative, we have

\[\text{Tr}_{L/K} (x+y) = \text{Tr}_{L/K} (x) + \text{Tr}_{L/K} (y), \quad N_{L/K} (xy) = N_{L/K} (x) N_{L/K} (y). \]

i.e. \(\text{Tr} \in \text{Hom} (L_1 K), \quad N_{L/K} \in \text{Hom} (L^*, K^*) \)

if \(L/K \) is separable, we can give an alternate definition in terms of Galois theory:

\begin{align*}
(1) & \quad \text{det} (t \cdot I_n - T_x) = \prod_{\sigma} (t - \sigma(x)) \\
(2) & \quad \text{Tr}_{L/K} (x) = \sum_{\sigma} \sigma(x) \\
(3) & \quad N_{L/K} (x) = \prod_{\sigma} \sigma(x) \\
\end{align*}

\text{where } \sigma \text{ varies over all } K \text{ embeddings of } L \text{ in algebraic closure } \overline{K}/K.

\text{Immediate corollaries of (1).}

proof: We show first that \(\text{det} (t \cdot I_n - T_x) = p_x(t)^d \) \(p_x(t) \) min. poly. of \(x \) over \(K \)

indeed, \([1, x, \ldots, x^{m-1}] \) is basis for \(K(x)/K \)

if \(\text{deg} (p_x(t)) = m \).

Extend to a basis of \(L/K \) using basis \(\alpha_i, \ldots, \alpha_d \) of \(L/K(x) \).

(take all products of \(\alpha_i \) and \(x^j \))

With this "good" basis w.r.t. \(x \), then \(T_x \) looks especially nice:
its matrix consists of \(d \) blocks of size \(m \times m \) along diagonal

\[
\begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{pmatrix}
\]

so char. poly. has form claimed:

\[-c_0 - c_1 t - \cdots - c_d\]

for \(c_0, c_1, \ldots, c_d \) \(x \) since mult. by \(x \) takes \(\alpha_i x^j \to \alpha_i x^{j+1} \)

here we are writing \(p_x(t) = t^m + c_1 t^{m-1} + \cdots + c_m \).

To finish the proof of (i), partition the set \(\text{Hom}_K(L, K) \) of all \(K \)-embeddings of \(L \) according to equivalence relation:

\[b \sim \tilde{b} \iff b x = \tilde{b} x \text{ for our fixed elt } x \in L. \]

(\(m \) equivalence classes w/ \(d \) elts. each.)

Pick reps. \(b_1, \ldots, b_m \) for each equivalence class. Then

\[p_x(t) = \prod_{i=1}^m (t - b_i x) \]

so

\[\det (t \cdot I_m - T_x) = \prod_{i=1}^m (t - b_i x)^d = \prod_{i=1}^m \prod_{j=1}^d (t - b_i x) \]

\[
= \prod_{i=1}^m (t - b_i) \prod_{j=1}^d (t - b_i x)
\]

using this interpretation, not hard to show

Cor: If \(K \triangleleft L \triangleleft M \) is a tower of finite, separable extensions, then

\[\text{Tr}_{K} \cdot \text{Tr}_{M/K} = \text{Tr}_{M} \quad \text{and} \quad \text{Nh}_{K} \cdot \text{Nh}_{M/K} = \text{Nh}_{M/K} \]

(in fact, same is true even if extensions not separable, since trace/norm are expressible in terms of maximal sep. extension.)
Given a basis $\alpha_1, \ldots, \alpha_n$ of separable extension L/K, then
define the discriminant

$$d(\alpha_1, \ldots, \alpha_n) = \det (b_i(\alpha_j))^2$$

where $b_i : K$-embeddings of L in \overline{K}.

In particular, if we take the basis of form,

$$1, \theta, \theta^2, \ldots, \theta^{n-1},$$

and set $\theta_i = b_i(\theta)$ then

we must compute the determinant of the Vandermonde matrix

$$\det \begin{pmatrix}
1 & \theta_1 & \theta_1^2 & \cdots & \theta_1^{n-1} \\
1 & \theta_2 & \theta_2^2 & \cdots & \theta_2^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \theta_m & \theta_m^2 & \cdots & \theta_m^{n-1}
\end{pmatrix} = \prod_{i<j} (\theta_i - \theta_j)^2$$

so the discriminant is this quantity squared.

If this looks familiar, recall discriminant of monic polynomial is the product:

$$\prod (r_i - r_j)^2$$

where r_i are roots of poly. $i<j$ separable.

For example, given finite extension of fields L/K, write

$$L = K(\theta)$$

with basis $1, \theta_1, \ldots, \theta_{n-1}$

and min. poly. $P_\theta(t) = t^n + \cdots + a_n = \prod_{i=1}^n (t - b_i(\theta))$.

In the simplest case where L is Galois, elts permute the roots but still true even if L/K separable.

These definitions make sense for any field extension, but if we assume A int. closed integral domain, K field of fractions, L extn of K, B int. closure of A in L, then know $\text{Tr}(x), N(x) \in A$.

(Use characterization in terms of embeddings if $x \in B$)

$$x \in B \iff \sum_{x \in B} b(x) = \text{Tr}(x)$$