Thus every elt $x \in \mathcal{L} \cdot K_v$ is expressible as limit of elts in \mathcal{L}, i.e.

$$x = \lim_{n \to \infty} \mathcal{L} \cdot x_n, \quad x_n \in \mathcal{L} \cdot v_n$$

Since $\widetilde{\nu} \circ \mathcal{T} = \nu \circ \mathcal{T}'$ then \(\{\mathcal{T}' \cdot x_n\} \approx \{\mathcal{L} \cdot x_n\}\) converges in $\widetilde{\nu} \circ \mathcal{T}'$ topology of $\mathcal{L}' \cdot \mathcal{L} \cdot K_v$

Call resulting limit $\mathcal{L} \cdot x$.

Then $x \mapsto \mathcal{L} \cdot x$ is our desired isomorphism $\mathcal{L} \cdot K_v \to \mathcal{L}' \cdot \mathcal{L} \cdot K_v$.

and it leaves K_v fixed. Now extend to autom. ζ of $\text{Gal}(\overline{K_v}/K_v)$.

Fancy algebraic formulation: tensor products of vector spaces -

Have natural homomorphisms

$$\mathcal{L} \otimes_k K_v \to \mathcal{L} \otimes K_v$$

$q \otimes b \mapsto a \otimes b$ (or maybe better $\mathcal{T}(a) \otimes b$)

L as K-vector space now viewed as K_v-vector space (extension of scalars)

If we do this for all K_v-embedding v places w over v

then have map

$$\phi: \mathcal{L} \otimes_k K_v \to \mathcal{T} \cdot \mathcal{L} \cdot v_w$$

Proposition: If L/K separable, then ϕ is isomorphism.
proof of Proposition: Use earlier characterization with \(\alpha \) primitive elt, if its minimal polynomial.

\[
f(x) = \prod_{w \mid v} \text{image of } \alpha \text{ in } L_w \subseteq K_v[x] \]

view \(L \) as embedded in \(K_v \). (and \(L \cap w \))

Thus we have commutative diagram:

\[
\begin{array}{ccc}
K_v[x]/(f) & \xrightarrow{\sim} & \prod_{w \mid v} K_v[x]/(p_w) \\
\downarrow \alpha \times & & \downarrow \alpha \times \\
L \otimes K_v & \xrightarrow{\text{homom. above}} & \prod_{w \mid v} L_w \\
\end{array}
\]

for each \(w \mid v \)

since \(L = K[x]/(f) = K[\alpha] \)

and \(K_v \) extends scalars

Let \(\alpha w \): image of \(\alpha \in L \) in \(L_w \subseteq \overline{K}_v \).

we have \(L_w \cong L \cdot K_v \)

with \(p_w(x) \) min poly. of \(\alpha w \).

so \([L_w : K_v] = \deg(p_w) \)

"local degree"

But since top and sides are isom.,

bottom must be isom. as well.

(explicitly sends \(\alpha \otimes 1 \mapsto \alpha w \)

for each \(w \mid v \))

Corollary:

\[
[L : K] = \sum_{w \mid v} [L_w : K_v]
\]

if \(L \mid K \) separable, finite

if \(v \) discrete, then since \([L_w : K_v] = e_w f_w \), where \(e_w = [w(L^x) : V(K^x)] \)

\[
f_w = [\lambda_w : K_{K_v}]_L \]

Better notation:

\[
[L : K] = \sum_{w \mid v} e_w f_w
\]
If of corollary is immediate from proposition:

\[[L:K] = \dim_K (L) \]

\[\text{dim}_K (L \otimes_K K) = \sum_{w|\nu} \dim_{K_{w}} (L_{w}) \]

\[\text{prop.} \]

Compare to our ideal-theory fundamental identity:

\[f \in \mathcal{O}_K : \text{Dedekind domain} \]

\[f \mathcal{O}_L = \mathcal{O}_L^e_1 \cdots \mathcal{O}_L^e_r \]

\[L|K : \text{finite extn} \]

and valuations \(w_i = \frac{1}{e_i} \nu_{\beta_i} \) are normalized extensions of valuation \(\nu = \nu_{\beta} \) on \(K \).

We said before that \(e_i \) indeed agree with ramification indices.

\[[w_i(L^x) : v(K_x)] \]

Since in discrete valuation

\[w_i(L^x) = w_i(\beta) \cdot \mathbb{Z}, \quad v(K_x) = v(\beta) \cdot \mathbb{Z} \]

What about \(f_i \)? Previously said

\[f_i = \left[\mathcal{O}_L/\mathcal{O}_L^{e_i} : \mathcal{O}_L/\mathcal{O}_L^{e_r} \right] \]

and when we pass to local fields these indeed are isomorphic to \(\mathcal{O}_L/\mathcal{O}_L^{e_i} \)

and \(\mathcal{O}_L/\mathcal{O}_L^{e_r} \).

Why does our factorization theorem before,

for all primes not dividing the conductor,

analyze \(f \cdot \mathcal{O}_L \)'s factorization by factoring min poly. \(f \) for \(\alpha \) s.t. \(L = K[\alpha] \).

mod \(p \):

\[f(x) \equiv \mathcal{P}_1(x) \cdots \mathcal{P}_r(x) \pmod{p} \]

with \(\deg (\mathcal{P}_i) = \text{residual degree} \quad \text{of} \quad \alpha_i \), agree with

new factorization theorem?