Just as in the treatment via ideals, if L/K Galois then can make more precise conclusions about extensions by studying action on valuations.

Always two cases - L/K finite - familiar properties of Galois ext's

1-1 corresp. of intermediate fields and

subgrp. of $\text{Gal}(L/K)$

L/K infinite - this 1-1 corresp. is false w/o modification.

Introduce Krull topology on $\text{Gal}(L/K)$, where base of open nbhds of G consists of cosets $G \cdot \text{Gal}(L/M)$ with M/K finite Galois subext. in L/K.

Then $\text{Gal}(L/K)$ is compact, Hausdorff in this topology and 1-1 corresp is restored by considering only closed subgroups w.r.t. Krull topology.

Proposition: G acts transitively on the extensions W.

First note that $6 \in G = \text{Gal}(L/K)$ acts by $|\alpha|_W = 6^{-1}(\alpha)|_W$.

So $|\alpha|_W = 6^{-1}(\alpha)|_W = (6^*|_W)^{-1}$.

On: act on right: $|\alpha|_W 6 = (6^{-1}(\alpha)|_W = (6^*|_W)^{-1}$.

Either way, clearly W_6 extends V since 6 fixes K.

pf. of Proposition: In case of ideals, showed $\text{Gal}(L/K)$ acts transitively on \mathfrak{g} in $G \mathfrak{O}_L = \mathfrak{g}_1 \cdots \mathfrak{g}_r$ by using fact that any two $\mathfrak{g}_i, \mathfrak{g}_j$ have $\mathfrak{g}_i \cap \mathfrak{O}_K = \mathfrak{g}_j \cap \mathfrak{O}_K = \mathfrak{g}$.

Now use Chinese Remainder Theorem to arrange $x \equiv 0 \mod \mathfrak{g}_i$ for all \mathfrak{g}_i and $x \equiv 6^k \mod \mathfrak{g}_j$ for some k from the given condition.

Thus, $x \equiv 6^k \mod \mathfrak{g}_j$ for all \mathfrak{g}_j, so x extends V.

Then taking norms, get \[N_{Y/k}(x) \] both in \(p \), not in \(p \). 4.

\[
\text{If } 6(x) \quad \text{using } x=0 \quad \text{for} \quad \text{using } x=1 \mod 6(p_f) \\
\in \text{Gal}(Y_k)
\]

We do the same in case \(L/k \) finite, but recall that our replacement for CRT is:

Given inequivalent valuations on \(L \), \(e > 0 \), \(\infty \in L \)

we can find \(x \) s.t. \(|x-a_i| < e \forall i=1, \ldots , n \).

Indeed if \(w, w' \) not conjugate then \(\exists w \circ 6 \in \text{Gal}(Y_k) \) is completely disjoint from \(\exists w' \circ 6 \in \text{Gal}(Y_k) \), so by approximation there \(\exists x \in L \)

with \(|6x|_w < 1 \quad |6x|_{w'} > 1 \forall 6 \in \text{Gal}(Y_k) \).

Taking norms, let \(\alpha = N_{Y/k}(x) \). Then \(|\alpha v| = \prod 6 \times 6x \to 1 \)

\[
\text{If } 6 \in \text{Gal}(Y_k) \quad \text{and } 6 \in \text{Gal}(Y_{w'}) \quad |6x|_w > 1, \quad 6 \in \text{Gal}(Y_{w'})
\]

In infinite case, use above result + little topology:

if \(L/k \) infinite, \(w, w' \) vals.

Let \(M/k \) finite Galois subextfin. \(X_M = \{ 6 \in G \mid w_6 \circ M = w' \mid M \} \)

Know \(X_M \) non-empty by above, and in fact closed. \(X_M \) is trans.

Know \(X_M \) non-empty by above, and in fact closed. \(X_M \) is trans.

\(\text{Note: }\) if \(\bigcap X_M \neq \emptyset \)

since if \(6 \in G \setminus X_M \) then open set \(6 \circ \text{Gal}(Y/M) \) is in \(G \setminus X_M \), and so the complement of \(X_M \) is the union of open sets.

\(G \setminus X_M \), and so the complement of \(X_M \) is the union of open sets.

Now if \(\bigcap X_M = \emptyset \) then since \(G \) compact, \(X_M \) closed \(\forall i.M \),

\(\Rightarrow \) \(\exists \) finite intersection \(\bigcap X_M = \emptyset \). \(\forall i = 1 \) since \(\bigcap X_M = X_{M_1 \cdot M_2 \cdots M_r} \)
the finite intersection claim is making use of Heine-Borel property.

Now we may define decomposition gp. assoc. to valuation \(w \) extending \(v \):

\[G_w = \{ \sigma \in \text{Gal}(L'/K) \mid w \circ \sigma = w \} \]

If \(w, v \) non-archimedean (so have valuation, not just abs. value, with ring of

\[I_w = \{ \sigma \in G_w \mid \sigma x \equiv x \mod \mathfrak{O}_L \forall x \in \mathfrak{O}_L \} \]

"inertia gp" - kernel of \(G_w \) under canon. homom. of \(L \) w.r.t. \(w \)

\[R_w = \{ \sigma \in G_w \mid \frac{\sigma x}{x} \equiv 1 \mod \mathfrak{O}_L \forall x \in L^x \} \]

"ramification gp"

with \(w \circ \sigma = w \) implying that \(\sigma \) fixes \(\mathfrak{O}_L \) in particular, so \(I_w \)

is well-defined and that \(\sigma x \in \mathfrak{O}_L \forall x \in L^x \) so \(R_w \) well-defined.

Furthermore, \(G_w, I_w, R_w \) are closed in Krull topology and well-behaved

with respect to commutative diagrams:

\[\begin{array}{ccc}
L & \xrightarrow{\tau} & L' \\
\downarrow \quad \tau & & \quad \downarrow \tau' \\
K & \rightarrow & K'
\end{array} \]

such that, for some homom. \(\tau \), the following

\[\text{diagram commutes (on } L, \text{ extending one on } K) \]

If \(\tau \) isomorphism, then all induced maps are isoms.

Special case: \(\tau \) itself Galois autom. \(G_{w \circ \tau} = \tau^{-1}G_w \tau \) etc.
Can also apply diagram to case of tower with completions:

\[\begin{array}{c}
L \\
\downarrow \quad \downarrow \\
L_w \\
\downarrow \\
K_v \\
\downarrow \\
K
\end{array} \]

then get map \(\text{Gal}(L_w/K_v) \to \text{Gal}(L/K) \)

\[6 \mapsto 6|_L \]

since homom. \(\tau : L \to L_w \) is inclusion.

So \(\tau^{-1} \) = restriction.

Proposition:

\[\begin{align*}
G_w(L/K) & \cong G_w(L_w/K_v) \\
I_w(L/K) & \cong I_w(L_w/K_v) \\
R_w(L/K) & \cong R_w(L_w/K_v)
\end{align*} \]

If: Key fact is that \(G_w(L/K) \) is continuous with respect to \(W \).

6 continuous w.r.t. \(W \). Immediate that \(6 \in G_w(L/K) \) is continuous w.r.t \(W \).

If \(6 \in \text{Gal}(L/K) \), continuous, then

\[|x|_W < 1 \Rightarrow \exists \{ x^n \} \to 0 \text{ in } W_{-\text{top}} \]

\[\Rightarrow \exists 6x^n \to 0 \text{ in } W_{-\text{top}} \]

\[\Rightarrow 6|x|_W < 1 \quad \text{i.e. } \quad |x|_{W_06} < 1 \]

\[\Rightarrow W = W_{06} \quad \text{(and in fact equal since they agree on } K) \]

i.e. \(6 \in G_w(L/K) \).

But now \(L \) dense in \(L_w \), so each \(6 \in G_w(L/K) \) admits unique extension to continuous \(G_w(L_w/K_v) \) (also preserves \(I_{w(R_w)} \))