Earlier notation: \(A \): integrally closed integral domain, \(K \): field of fractions

\(B \): integral closure of \(A \) in \(L/K \): finite extension,

\[
N_{L/K}(x) := \det(T_x) = \prod \delta(x)
\]
(for \(x \in L \))

\[
\text{Tr}_{L/K}(x) := \text{trace}(T_x) = \sum \delta(x)
\]

if \(L/K \) separable

\[
\frac{1}{n} \sum_{\sigma \in \text{Gal}(L/K)} \delta(x)
\]

\(6 \) ranges over \(K \)-embeddings of \(L \) in \(\bar{K} \).

(alg. closure)

(always true if \(K \)

cover 0, \(K \) finite)

if \(x \in B \), then \(N_{L/K}(x) \in K \) (from linear alg.) \(\Rightarrow \) \(x \in K \cap B = A \)

(from Galois defn)

if \(n \) extensions of separable, use Galois theoretic definition. If not,

similarly for trace, and

all coeffs of charpoly

\(\text{Norms/Traces behave well in towers of extensions:} \)

\[K = L \subseteq M \]

\[
\text{Tr}_{M/K} = \text{Tr}_{L/K} \circ \text{Tr}_{M/L}
\]

\[
N_{M/K} = N_{L/K} \cdot N_{M/L}
\]

(If extensions are separable, use Galois theoretic definition. If not,

use fact that trace equal up to fixed constant to trace of max. sep.

extension)

discriminant of a basis \(x_1, \ldots, x_n \) for \(L/K \), \(d(x_1, \ldots, x_n) \), given by

\[
\det\left(b_{ij} \right) = \det\left(\text{Tr}_{L/K}(x_i x_j) \right)
\]

\(i \mapsto -i \)

Example:

\(Q(i) = \langle 1, i \rangle \) as \(\mathbb{R} \) v.s. over \(Q \).

\(6 \in \langle 1, i \rangle \)

\(\langle 6 \rangle = \langle 1, i \rangle \)

Matrix:

\[
\begin{pmatrix}
1 & i \\
1 & -i
\end{pmatrix}
\]

so disk \((1, i) = -4 \).

Last time, we argued this was a good basis since integral for \(\mathbb{Z}[i] = \mathbb{Q}_K/\mathbb{Z} \)

Show such bases always exist for \(B \supseteq A \) with \(A: \text{P.1.D.} \)

int. closure
Want to use discriminant to show this. First check:

if \(L/k \) separable, \(\alpha_i, \ldots, \alpha_n \) basis for \(L/k \), then

\[
d(\alpha_1, \ldots, \alpha_n) \neq 0.
\]

pf: Follows from fact that \(\langle x, y \rangle := \text{Tr}_{L/k}(x y) \) is non-deg. bilinear form

so choosing basis \(\alpha_i, \ldots, \alpha_n \), the matrix associated is

\[
x^T M y \quad \text{with} \quad M = (\text{Tr}_{L/k}(\alpha_i \alpha_j))
\]

so

\[
d(\alpha_1, \ldots, \alpha_n) = \det(M) \neq 0
\]

earlier claim that
disc. is \(\det(\text{Tr}_{L/k}(\alpha_i \alpha_j)) \)

To show \(\langle x, y \rangle \) non-deg., we can pick any convenient basis.

e.g. \(1, \theta, \theta^2, \ldots, \theta^{n-1} \) if \(L = K(\theta) \). Then associated matrix

\[
M = \text{Tr}_{L/k}(\theta^{-1} \theta^{-1}) \quad \text{and} \quad \det(M) = d(1, \theta, \ldots, \theta^{n-1}) \quad \text{separable}
\]

\[
= \prod_{i < j} (\theta_i - \theta_j)^2 \neq 0.
\]

where \(\theta_i(\theta) = \theta_i \)

Now to prove \(B \) is a free \(A \)-module of rank \(w = [L:k] \),

(so has "integral basis" \(\omega_1, \ldots, \omega_n \) s.t. for any \(b = a_1 \omega_1 + \cdots + a_n \omega_n \), \(\alpha_i \in A \)

need two facts:

Fact 1: Let \(\alpha_i, \ldots, \alpha_n \) be basis for \(L/k \) with \(\alpha_i \in B \), then

\[
d(\alpha_1, \ldots, \alpha_n) \cdot B \subseteq A \alpha_1 + A \alpha_2 + \cdots + A \alpha_n
\]

i.e. is an \(A \)-submodule of a free \(A \)-module.
Note that a basis with $d \in B$ exists because, if

x_1, \ldots, x_n are basis, then x_i satisfy polynomial

for \mathbb{K}, then x_i satisfy polynomial

$$a_n x^n + \cdots + a_0 = 0$$

\Rightarrow $a_{n-1} x_i$ satisfies monic poly, so is in B (integral closure of A)

and doing this adjustment for all x_i gives new basis with $x_i \in B$.

Note also that Fact 1 implies B has rank n, since containment \Rightarrow rank $(dB) = \operatorname{rank} B \leq n$, and gens. for B as A-module are gens for L as K-module.

To finish we use:

Fact 2: Over a P.I.D. A, every submodule M' of a free A-module M of rank n is free of rank $\in [0,n]$.

(Neukirch "Main thm. on modules over P.I.D.") \Leftrightarrow cf. Jacobson p.179 "Basic Algebra I"

So $d(a_1, \ldots, a_n)B$ is free A-module, hence B is a free A-module.

More generally one can show that any fin-gen.

B-submodule $M^g \neq 0$ of L is free of rank $[L:K]$.

(see Neukirch)

easy corollary: structure thm. analogous to structure thm. for abelian gps.

Analogly nicely described in Artin's Algebra.
proof of Fact 1: Given \(b \in B \), write

\[
b = k_1 \alpha_1 + \ldots + k_n \alpha_n \quad k_i \in K.
\]

Then \(k_i \) give solution to the system of equations in \(x_i \):

\[
\text{Tr}_{H_k}(\alpha_i b) = \sum_j \text{Tr}_{H_k}(\alpha_i \alpha_j) x_j
\]

\(e \in B \cap K = A \) so solve system by inverting matrix

with entries \(\text{Tr}_{H_k}(\alpha_i \alpha_j) \)

so the resulting entries are \(x_i \)s of

\(A \) divided by \(\det (\text{Tr}_{H_k}(\alpha_i \alpha_j)) \)

\(\text{disc} (\alpha_1, \ldots, \alpha_n) \)

i.e. \(k_i \in A^* \) so

\[db = A \alpha_1 + \ldots + A \alpha_n \text{ as desired} \]

Finally if \(A = \mathbb{Z} \), \(B = \mathbb{Z} \) in \(L \), then given two bases \(\alpha_1, \ldots, \alpha_n \), \(\alpha_1', \ldots, \alpha_n' \)

they differ by change of basis matrix \((a_{ij}) \) \(a_{ij} \in \mathbb{Z} \)

which is invertible, so must have \(\det = \pm 1 \).

\[
\Rightarrow d(\alpha_1, \ldots, \alpha_n) = d(\alpha_1', \ldots, \alpha_n') \quad \text{(since \(\det \) involved square of det.)}
\]

so can define \(\text{disc.} (\theta_k) = d(\theta_k) := d(\alpha_1, \ldots, \alpha_n) \)

for any integral basis of \(B/A \).