Non-Book Problem #1) We seek solutions to the equation $z^5 = 3 + 3i = 3\sqrt{2}e^{i\pi/4}$. Clearly, the absolute value of any such z must be

$$|z| = \sqrt[4]{27*2} = \sqrt[4]{54}.$$

Furthermore, the argument of such a z must satisfy

$$\arg(z) * 5 = \frac{\pi}{4} \pm 2\pi k \quad \text{where} \quad k \in \mathbb{Z}.$$

Thus, the possible values of $\arg(z)$ within $[0, 2\pi)$ are $\pi/20, 5\pi/20, 9\pi/20, 13\pi/20, \text{and} 17\pi/20$. Thus, the fifth roots of $3 + 3i$ are

$$\sqrt[5]{54}e^{i\pi/20}, \sqrt[5]{54}e^{5\pi i/20}, \sqrt[5]{54}e^{9\pi i/20}, \sqrt[5]{54}e^{13\pi i/20}, \text{and} \sqrt[5]{54}e^{17\pi i/20}.$$

1.1.4

3) First, we do some basic manipulation, using the assumption that we do not have $|a| = |b| = 1$, meaning $1 - \overline{ab} \neq 0$:

$$\left| \frac{a - b}{1 - \overline{ab}} \right| = 1$$

$$\Leftrightarrow \left| \frac{a - b}{1 - \overline{ab}} \right|^2 = 1$$

$$\Leftrightarrow (a - b)(a - \overline{b}) = (1 - \overline{ab})(1 - ab)$$

$$\Leftrightarrow |a| + |b| - \overline{ab} - b\overline{a} = 1 + |a||b| - \overline{a}b - \overline{b}a$$

$$\Leftrightarrow |a| + |b| = 1 + |a||b|.$$

Thus, if either $|a|$ or $|b|$ is 1, then the above expression is trivially true. Furthermore, if $|a| = |b| = 1$, then as long as $a \neq b$, we will have $1 - \overline{ab} \neq 0$, meaning the above manipulation is still valid. We can conclude that in all cases except $a = b$ and $|a| = 1$, if $|a| = 1$ or $|b| = 1$ we may say

$$\left| \frac{a - b}{1 - \overline{ab}} \right| = 1.$$

4) For this problem, let $a = a_1 + ia_2$, $b = b_1 + ib_2$, $c = c_1 + ic_2$, and $z = z_1 + iz_2$. The equation

$$az + \overline{b}z = -c$$

gives us a system of two equations when we examine the real and imaginary parts separately:

$$(a_1 + b_1)z_1 + (b_2 - a_2)z_2 = -c_1$$
$$(a_2 + b_2)z_1 + (a_1 - b_1)z_2 = -c_2.$$
Thus, we will have a unique complex solution \(z = z_1 + iz_2 \) if and only if the above system is consistent and independent, that is, if and only if
\[
\det \begin{pmatrix} a_1 + b_1 & b_2 - a_2 \\ a_2 + b_2 & a_1 - b_1 \end{pmatrix} \neq 0.
\]
As the determinant of the above matrix is
\[
a_1^2 + a_2^2 - b_1^2 - b_2^2 = |a|^2 - |b|^2,
\]
we conclude that the equation \(az + b\bar{z} + c = 0 \) will have exactly one solution whenever \(|a| \neq |b|\).

To solve for \(z_1 \) and \(z_2 \), we simply apply Cramer's rule:
\[
z_1 = \frac{-c_1(a_1 - b_1) + c_2(b_2 - a_2)}{|a|^2 - |b|^2},
\]
\[
z_2 = \frac{-c_2(a_1 + b_1) + c_1(a_2 + b_2)}{|a|^2 - |b|^2}.
\]

1.1.5

1) Using the same algebra as in 1.1.4 # 3 (but replacing \(= \) with \(< \)), we can see that
\[
\left| \frac{a - b}{1 - \bar{a}b} \right| < 1 \Leftrightarrow |a|^2 + |b|^2 < 1 + |a|^2|b|^2.
\]
Note that we can ignore the case where \(\bar{a}b = 1 \), as by assumption \(|a| < 1 \) and \(|b| < 1 \). We can rewrite the above expression as
\[
|a|^2 + |b|^2 - |a|^2|b|^2 < 1 \Leftrightarrow |a|^2(1 - |b|^2) + |b|^2 < 1.
\]
However, since \(|b| < 1 \), \(1 - |b|^2 > 0 \), and since \(|a| < 1 \), we may say \(|a|^2(1 - |b|^2) < (1 - |b|^2)\).
Thus, in our situation,
\[
|a|^2(1 - |b|^2) + |b|^2 < (1 - |b|^2) + |b|^2 = 1,
\]
as desired.

4) For this problem, we freely use the fact that \(|z - a| = d(z, a)\) in the complex plane. By the triangle inequality, we know that
\[
d(z, a) + d(z, -a) \geq d(-a, a) \Rightarrow |z - a| + |z + a| \geq 2|a|.
\]
By the above expression, it follows that, for this equation to have a solution, it must be that \(|a| \leq |c|\), as otherwise the expression would violate the triangle inequality. By similar geometric logic, if \(|a| \leq |c|\), then there is at least one point (usually 2) in \(\mathbb{C} \) with distance \(|c|\) from both \(a \) and \(-a\). Any such point can be a solution to this equation.

Observe that if \(|a| = |c|\), then the only solution to this equation is to have \(z = 0 \), so it is possible for \(|z| = 0 \). On the other hand, the triangle inequality also tells us that \(|z| \leq |c|\).

Since setting \(a = 0 \) allows \(z = c \) as a solution, we conclude that \(0 \leq |z| \leq |c| \).
1.2.2

5) As long as \(n \not\equiv h \),
\[
1 - \omega^h + \omega^2h - \cdots + (-1)^{n-1}\omega^{(n-1)h} = \sum_{k=0}^{n-1}(-\omega^h)^k
\]
is a finite geometric series with more than one summand. Thus,
\[
\sum_{k=0}^{n-1}(-\omega^h)^k = \frac{1 - (-\omega^h)^n}{1 + \omega^h} = \frac{1 - (-1)^n}{1 + \omega^h} = \begin{cases}
0 & \text{if } n \in 2\mathbb{Z} \\
\frac{2}{1 + \omega^h} & \text{if } n \in 2\mathbb{Z} + 1
\end{cases}
\]

1.2.3

1) By our work in problem 1.1.4 #4, we know that it is sufficient to study the following system of equations (derived by studying the real and imaginary parts separately):
\[
(a_1 + b_1)z_1 + (b_2 - a_2)z_2 = -c_1
\]
\[
(a_2 + b_2)z_1 + (a_1 - b_1)z_2 = -c_2.
\]
This will have exactly one solution when the system is independent and consistent (which occurs when \(|a| \neq |b|\), and it will have zero solutions when the system is inconsistent. Thus, we need to study the situation where \(|a| = |b|\), and where not all of \(a, b,\) and \(c\) are zero (since then the entire plane is a solution). If we insist on those conditions, then the system will have a line as a solution when there exists a constant \(k \in \mathbb{R}\) such that
\[
c_1 = kc_2
\]
\[
a_1 + b_1 = k(a_2 + b_2)
\]
\[
b_2 - a_2 = k(a_1 - b_1).
\]

2) For this problem, we use that absolute value is a distance function, and appeal to the geometric definitions of ellipse, hyperbola, and parabola. Let \(f_1\) and \(f_2\) be two distinct points in \(\mathbb{C}\), and let \(c \in \mathbb{C}\) such that \(|c| > |f_1 - f_2|\). For any such \(c\), An ellipse with foci at \(f_1\) and \(f_2\) will be given by the points \(z\) satisfying
\[
|z - f_1| + |z - f_2| = |c|.
\]
Similarly, for any \(c \in \mathbb{C}\), the following equation will give a hyperbola:
\[
|z - f_1| - |z - f_2| = \pm|c|.
\]
Note that this allows some degenerate cases.
Finally, for a parabola, let \(a, b, f \in C\) where \(a \neq 0\). The following equation will give a parabola:
\[
|f - z| = \min_{t \in \mathbb{R}} |z - (a + bt)|.
\]
Here, \(f\) is the focus and \(a + bt\) is the directrix of the parabola.
1) \(\Rightarrow \) Assume \(\overline{zz'} = -1 \). Note that this implies \(\overline{zz'} = -1 \). \(z \) and \(z' \) will correspond to antipolar points on the sphere if the distance between those points (in \(\mathbb{R}^3 \)) is maximized, that is, when the distance is 2. Using the distance equation from class, we get that

\[
d(z, z') = \frac{2|z - z'|}{\sqrt{(1 + |z|^2)(1 + |z'|^2)}}
\]

\[\iff d(z, z')^2 = 4(z - z')(z - z') \]

\[= \frac{4|z|^2 + |z'|^2 + 1 + |z|^2|z'|^2}{|z|^2 + |z'|^2 + 1 + (zz')(zz')}
\]

\[= 4 = 4 \Rightarrow d(z, z') = 2 \]

Thus, the assumption that \(\overline{zz'} = -1 \) implies that the chordal distance between the corresponding points on the Riemann sphere is 2, so these points must be antipodal.

\(\Leftarrow \) Assume \(z \) and \(z' \) correspond to antipolar points on the sphere. Since \(\mathbb{C} \) is a field, there is a unique number \(x \in \mathbb{C} \) satisfying \(zx = -1 \). By part (a), \(x \) and \(z \) correspond to antipolar points. However, since each point on the sphere has exactly one antipolar point, it must be that \(z = z' \).

2) Observe that our cube must have vertices at

\[\{ c \ast (x_1, x_2, x_3) : x_1, x_2, x_3 \in \{-1, 1\}\}\]

for some nonnegative, real constant \(c \). By elementary geometry, we may see that \(c = 1/\sqrt{3} \) suffices. By the formula for a stereographic projection, we find the corresponding points in \(\mathbb{C} \) are

\[\left\{ \frac{x + iy}{1 - z} : x, y, z \in \left\{ -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\} \right\}.
\]