All the exercises are obtained from *Complex Analysis*, Third Edition, by Lars Ahlfors.

1. (Exercise 1, Section 4.2.3) Compute

(a) \(\int_{|z|=1} e^z z^{-n} \, dz \);

(b) \(\int_{|z|=2} z^n (1 - z)^m \, dz \);

(c) \(\int_{|z|=\rho} |z - a|^{-4} \, dz \), where \(|a| \neq \rho \).

Solution.

(a) Since \(|z| = 1 \) is a circle containing 0, we know that

\[
\int_{|z|=1} \frac{e^z}{z^n} \, dz = \frac{2\pi i}{(n-1)!} \left(\frac{(n-1)!}{2\pi i} \int_{|z|=1} \frac{e^z}{(z-0)^n} \, dz \right)
\]

\[
= \frac{2\pi i}{(n-1)!} \left. \frac{d^{n-1}}{dz^{n-1}}(e^z) \right|_{z=0}
\]

\[
= \frac{2\pi i}{(n-1)!}
\]

We have implicitly assumed that \(n > 0 \). If \(n \leq 0 \), then the exercise is trivial for \(e^z z^{-n} \) would be an analytic function — so the integral would evaluate to 0.

(b) We consider two separate cases. We do not treat the case when \(n, m \geq 0 \) for the integrand \(z^n (1 - z)^m \) is analytic in the inside of \(|z| = 2 \), so the value of the integral is 0.

i. Case \(n < 0, m \geq 0 \): We see that

\[
\int_{|z|=2} \frac{(1 - z)^m}{z^n} \, dz = \frac{(n-1)!}{2\pi i} \left(\frac{2\pi i}{(n-1)!} \int_{|z|=1} \frac{(1 - z)^m}{(z-0)^n} \, dz \right)
\]

\[
= \frac{2\pi i}{(n-1)!} \left. \frac{d^{n-1}}{dz^{n-1}}(1 - z)^m \right|_{z=0}
\]

\[
= \frac{2\pi i}{(n-1)!} \left. \frac{d^{n-1}}{dz^{n-1}} \sum_{r=0}^{m} \binom{m}{r} (-1)^r z^r \right|_{z=0}
\]

\[
= \left\{ \begin{array}{ll}
0, & \text{if } m > n - 1, \\
(-1)^{n-1} \frac{2\pi i}{(n-1)!} \frac{m}{(n-1)(n-2) \cdots 2 \cdot 1}, & \text{if } m \leq n - 1,
\end{array} \right.
\]
or, in other words,
\[
\int_{|z|=2} \frac{(1-z)^m}{z^n} \, dz = \begin{cases}
0, & \text{if } m > n - 1, \\
(-1)^{n-1} 2\pi i \binom{m}{n-1}, & \text{if } m \leq n - 1,
\end{cases}
\]

ii. Case \(n \geq 0, m < 0 \): Very similar to the previous case. We have
\[
\int_{|z|=2} \frac{z^n}{(1-z)^m} \, dz = \frac{2\pi i}{(-1)^m (m-1)!} \left(\frac{(m-1)!}{2\pi i} \int_{|z|=2} \frac{z^n}{(z-1)^m} \, dz \right)
= (-1)^m \frac{2\pi i}{(m-1)!} \left. \frac{\partial^{m-1}}{\partial z^{m-1}} z^n \right|_{z=1}
= \begin{cases}
0, & \text{if } m - 1 > n; \\
(-1)^m \frac{2\pi i}{(m-1)!} n(n-1) \cdots (n-m+1), & \text{if } m - 1 \leq n.
\end{cases}
\]

(c) Recall that \(|dz| = i\rho \frac{dz}{z} \). First notice that if \(a = 0 \), then the given integral reduces to
\[
-i\rho \int_C \frac{dz}{\rho^3 z} = \frac{2\pi}{\rho^3}.
\]
Now we focus on the case when \(a \neq 0 \). Specifically, we will consider the cases where \(|a| > \rho \), and \(|a| < \rho \). After much algebra, we obtain
\[
\int_C \frac{|dz|}{|z-a|^4} = -i\rho \int_C \frac{dz}{(z-\frac{a}{\rho})^2 (z-a)^2}.
\]
Let \(b = \frac{a}{\rho} \). In the former case, we have that \(z/(z-a)^2 \) is analytic in \(C \). Therefore,
\[
\frac{2\pi \rho}{a^2} \left(\frac{a + b}{(a-b)^2} \right).
\]
The result turns out to be identical for \(|a| < \rho \).

2. (Exercise 2, Section 4.2.3) Prove that a function that is analytic in the whole plane and satisfies an inequality \(|f(z)| < |z|^n \) for some \(n \) and all sufficiently large \(|z| \), reduces to a polynomial.

Proof. We can make the following estimate of the \(k \)th derivative of \(f \) at a point \(z \):
\[
|f^{(k)}(z)| \leq \frac{n!}{2\pi} \int_C \frac{|f(\zeta)|}{|\zeta - z|^{n+1}} \, |d\zeta|
= n! \frac{|z|^n}{|z|^k}
= n! |z|^{n-k}.
\]
Setting \(k = n + 1 \), we have

\[
|f^{(n+1)}(z)| \leq \frac{(n+1)!}{|z|} \to 0
\]
as \(|z| \to \infty \). Since the above assertion holds for any \(z \), we conclude that \(f \) must be a polynomial.

3. (Exercise 3, Section 4.2.3) If \(f \) is analytic and \(|f(z)| \leq M \) for \(|z| \leq R \), find an upper bound for \(|f^{(n)}(z)| \) in \(|z| \leq \rho < R \).

Solution. Instead of using \(r \) in Cauchy's estimate, which corresponds to the radius of the circle centered at some point, we can now surround \(z \) (the point at which we evaluate the derivative \(f^{(n)} \)) by a circle of radius at most \(R - \rho \). Therefore, we have the upper bound

\[
|f^{(n)}(z)| \leq \frac{n!M}{(R - \rho)^n}
\]

4. (Exercise 5, Section 4.2.3) Show that the successive derivatives of an analytic function at a point can never satisfy \(|f^{(n)}(z)| > n!n^n \). Formulate a sharper theorem of the same kind.

Proof. Let \(C \) be a circle of radius \(r \) centered at \(z \) such that \(f \) is analytic inside \(C \) (and on \(C \)). For the \(n \)th derivative of \(f \), we know the estimate

\[
|f^{(n)}(z)| \leq \frac{n!}{2\pi} \int_C \frac{|f(\zeta)|}{|\zeta - z|^{n+1}} \, d\zeta \\
\leq \frac{n!M(2\pi r)}{(2\pi)^{n+1}r^{n+1}} \\
\leq \frac{n!M}{r^n},
\]

where we define \(M \) to be \(\sup |f(\zeta)| \), which we know must be finite since we are taking the supremum of \(f \) over a compact set. Now let \(n \) be \(\max\{1, M/r\} \), so we have \(nr \geq M > 1 \), which implies that \((nr)^n \geq M \Rightarrow n^n \geq \frac{M}{r^n} \).

Substituting the above inequality into our estimate for the \(n \)th derivative of \(f \) yields \(|f^{(n)}(z)| \leq n!n^n \), which implies that the derivative of \(f \) never satisfies the strict inequality \(|f^{(n)}(z)| > n!n^n \).