Theorem: If \(f \) analytic on \(D - \bigg\{ \sum_{j=1}^{k} S_j \bigg\} \) such that

\[
\lim_{z \to S_j} (z - S_j)f(z) = 0 \quad \forall \ j = 1, \ldots, k
\]

then

\[
\oint_{\gamma} f(z) \, dz = 0
\]

for any (smooth) closed curve \(\gamma \subseteq D - \bigg\{ \sum_{j=1}^{k} S_j \bigg\} \).

To combine earlier results, proved true on disk \(D \), true for a rectangle

\(R - \bigg\{ \sum_{j=1}^{k} S_j \bigg\} \), for

finite \# of pts. \(S_j \).

Just choose rectilinear paths in \(D \)

to avoid \(S_j \)’s:

Complete proof as before.

Key ingredient in pf. of Cauchy's integral formula: Suppose \(f \) analytic on \(D \).

Let \(\phi(z) = \frac{f(z) - f(a)}{z - a} \).

Then

\[
\lim_{z \to a} \phi(z) \cdot (z - a) = \lim_{z \to a} \frac{f(z) - f(a)}{z - a} = 0 \quad \text{(since } f \text{ analytic implies } f \text{ continuous)}
\]

Hence:

\[
\oint_{\gamma} \left(\frac{f(z) - f(a)}{z - a} \right) \, dz = 0
\]

or equivalently:

\[
\oint_{\gamma} \frac{f(z)}{z - a} \, dz = f(a) \cdot \oint_{\gamma} \frac{1}{z - a} \, dz
\]

\(\gamma \) is circle centered at \(a \) with sufficiently small radius \(r \).

If \(\gamma = C(a; r) \subseteq D \), then

\[
\oint_{\gamma} \frac{1}{z - a} \, dz = 2\pi i
\]
Conclusion: \[f(a) = \frac{1}{2\pi i} \oint_{C(a;r)} \frac{f(z)}{z-a} \, dz \]

We can understand the value of the function at any point \(a \) in disk, just by knowing its values on \(C(a;r) \). In fact, similar statement is true for general closed curves in \(\mathbb{C} \). Just need to analyze \(\oint_{\gamma} \frac{dz}{z-a} \).
Believe the circle \(C(a,r) \) centered at \(a \) is fundamental.

Traversing circle twice counter-clockwise gives \(2 \cdot (2\pi i) \). Expect a curve of shape:

Further, if \(\gamma \) has self-intersections:

then can be separated into multiple piece-wise smooth closed curves. Previous thm \(\Rightarrow \) \(\int_{\gamma_i} \frac{1}{z-a} \, dz = 0 \) if \(\gamma_i \) does not contain \(a \).

Conjecture: \(\int_{\gamma} \frac{dz}{z-a} = n \cdot 2\pi i \), where \(n \) is an integer.

if \(\gamma \) closed curve containing \(a \).

How to prove this? \(2\pi i \) is period for \(e^z \). If \(\gamma \) parametrized by \(z(t) \), \(t \in [\alpha, \beta] \), then

\[
\int_{\gamma} \frac{dz}{z-a} = \int_{\alpha}^{\beta} \frac{z'(t)}{z(t)-a} \, dt
\]

so consider

\[h(t) := \int_{\alpha}^{t} \frac{z'(s)}{z(s)-a} \, ds \] is continuous, \(h : \mathbb{R} \to \mathbb{C} \).
with \(h'(t) = \frac{z'(t)}{z(t) - a} \). Want to show \(e^{h(t)} = 1 \).

\[
\frac{d}{dt} e^{h(t)} = \frac{z'(t)}{z(t) - a} e^{h(t)} , \text{ so } \frac{d}{dt} (z(t) - a) e^{-h(t)} = 0 \text{ for all } t .
\]

\[\Rightarrow (z(t) - a) e^{-h(t)} \text{ is constant} . \]

If \(t = a \), then \(h(a) = 0 \), so

\[z(a) - a = (z(t) - a) e^{-h(t)} \]

(e. \(e^{h(t)} = \frac{z(t) - a}{z(a) - a} \)).

Setting \(t = \beta \), we see that the right-hand side is 1. So \(e^{h(\beta)} = 1 \).

\[\Rightarrow h(\beta) = \int_\alpha^\beta \frac{dz}{z(t) - a} \text{ is multiple of } 2\pi i . \]

Define "winding number" to be this integer: \(n(\gamma, a) = \int \frac{dz}{z - a} \cdot \left(\frac{1}{2\pi i} \right) \).

Properties:

1. \(n(\gamma, a) = -n(-\gamma, a) \)

2. \(n(\gamma, a) = 0 \) if \(\gamma \) contained in disk \(D \), \(a \notin D \).

3. \(\gamma \) cuts \(C \cup \Sigma \) into open, connected sets, \(n(\gamma, a) \) constant on a region.
pf of \(\bigcirc \): Any two points \(a, b \in \Omega \) : open connected

are joined by path consisting of straight line segments.

So suffices to examine case when \(a, b \) joined by a single straight line segment.

show \(n(\gamma, a) = n(\gamma, b) \) in this case.

Clever fact: \(\frac{z-a}{z-b} \) is only real, negative on segment connecting \(a \) to \(b \).

\[\Rightarrow \log \left(\frac{z-a}{z-b} \right) \text{ is well-defined single valued function off the line segment } [a,b]. \]

with derivative \(\frac{1}{z-a} - \frac{1}{z-b} \), so \(\int_{\gamma} \left(\frac{1}{z-a} - \frac{1}{z-b} \right) dz = 0 \)

i.e. \(n(\gamma, a) = n(\gamma, b) \).

To show \(n(\gamma, a) = 0 \) if \(a \) in component containing \(\infty \), already know constant, so

just need to know \(n(\gamma, a) = 0 \) at some point.

a with

Pick \(|a| \) suff. large so that \(\gamma \) contained in a disk away from \(a \).
Thus we have proved the following theorem:

Theorem: Suppose f is analytic on open disk D, γ closed curve in D. Then for any point $a \notin \gamma$, then

$$f(a) = \frac{1}{2\pi i \cdot n(\gamma, a)} \oint_{\gamma} \frac{f(z) \, dz}{z - a}$$

$n(\gamma, a)$: winding number.