Plan for the day:
- a few more consequences of C.I.F.
- discuss what's next after midterm
- reminders about content of midterm

Consequences of C.I.F. So far:
- Morera's Thm: \(\text{meromorphic in } \Omega \Rightarrow f \text{ analytic} \) of \(f \)
- Liouville's Thm: \(\text{bounded, entire functions constant} \)
- Cauchy's estimate on \(n^{th} \) derivatives

\(f^n(z) \) is holomorphic on \(\Omega \)

\[f^n(z) = f(a) + f'(a)(z-a) + \cdots + f^{n-1}(a)(z-a)^{n-1} + \frac{f^n(a)}{(n-1)!} \]

with \(f_n(z) = \frac{1}{2\pi i} \oint_C \frac{f(s)}{(s-a)^n(s-z)} \, ds \)

Perform Cauchy-ineq estimate on this. \(f \) continuous on \(C \) (compact) means \(|f(z)| \leq M \)

then \(|f_n(z)| \leq \frac{M}{R^{n-1} \cdot \left(R-|z-a|\right)} \)

if \(C \) is compact of \(a \) of radius \(R \).

\(C \) inside \(C \) so \(|z-a| < R \).
Then: if analytic in \(\Omega \), a.e. \(\Omega \) s.t. \(f^{(n)}(a) = 0 \) \(\forall n \geq 0 \)

then \(f \equiv 0 \) in \(\Omega \).

Identically 0 at all pts in \(\Omega \).

If: Since derivatives at \(a \) vanish,

\[f(z) = (z-a)^n f_n(z) \]

for any \(n \).

By our estimate

\[|f(z)| \leq \frac{|z-a|^n}{R^n} \cdot \frac{M_R}{R-|z-a|} \]

Take limit as \(n \to \infty \)

\[\frac{|z-a|}{R} < 1 \]

so

\[|f(z)| \]

\Rightarrow \(f(z) = 0 \) on interior of \(C \).

Left to show: \(f \) is 0 on all of \(\Omega \).

(\(C \) was just circle centered about \(a \) inside \(\Omega \))

Clearer topological arg.:

\(\Omega = E_1 \cup E_2 \)

pts. \(z_0 \in \Omega \) s.t. all derivs of \(f \) vanish.

\(E_1 \) : all derivs of \(f \) at \(z_0 \) vanish.

\(E_2 \) : pts. \(z_0 \) s.t. some deriv. doesn't vanish.

Previous argument via circles \(\Rightarrow E_1 \) open.

\(E_2 \) open since derivs of \(f \) are continuous, so \(f^{(k)}(z_0) \to 0 \)

say equal to \(z_1 \)

take open nbhd of \(z_1 \) not containing 0, im. image under \(f(z) \) is open.

But \(\Omega \) open, conn. \(\Rightarrow \) either \(E_1, E_2 \) empty.

But \(a \in E_1 \) so

must be \(E_2 \) is empty.

\(\Rightarrow f \equiv 0 \) in \(\Omega \).
Turn this logic around:

If $f \neq 0$ on Ω, then smallest h s.t. $f^{(h)}(a) \neq 0$ at any $a \in \Omega$.

(i.e. order of a zero of f is finite, for all analytic functions)

Write it $f(z) = (z-a)^n f_n(z)$

with $f_n(a) \neq 0$ just as for polynomials.

In fact, $f_n(z) \neq 0$ in nbhd of a.

(since $f_n(z)$ analytic, so also continuous)

non-zero

so zeros of analytic function are isolated.

[All or Nothing rule]

Corollary: If f, g analytic on Ω and $f(z) = g(z)$ for $z \in S$, set

then $f = g$ for all $z \in \Omega$.

pf: For $z \in S$, $f - g = 0$ so zeros of $f - g$ not isolated

$\implies f - g \equiv 0$ on Ω.