Other use of isolated zeros / Cauchy int. formula:

Suppose f analytic on disk D, γ : closed curve in D with
with finitely many zeros z_1, \ldots, z_n not on γ.

Write $f(z) = (z - z_1) \cdots (z - z_n) g(z)$ with $g(z)$ analytic, $\neq 0$ on D.

(Here z_i's may not be distinct.

can be repeated according to multiplicity)

Just as in Lucas-Gauss thm. on zeros of polynomials:

take logarithmic derivative to get

$$\frac{f'(z)}{f(z)} = \frac{1}{z - z_1} + \cdots + \frac{1}{z - z_n} + \frac{g'(z)}{g(z)},$$

Integrate both sides over γ.

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} \, dz = \sum_{j=1}^{n} \left(\text{index of } \gamma \text{ at } z_j \right) \quad \text{(since } \int_{\gamma} \frac{g'(z)}{g(z)} = 0)$$

b/c $g(z) \neq 0$ on D

so $g'(z)/g(z)$ is analytic on D.

Here use that we only know

Cauchy's thm. on disk D.

Note that our assumption about f having finitely
many zeros is unnecessary since only zeros inside γ
contribute to equality. There are only finitely many of these
since $\gamma \subset B' \subset D$ for some B' with $B' \cap D$. on this

...and cut γ. Infinitely many zeros would have an accumulation point.
If curve is simple, e.g. circle, then \(n(z_1, z_2) \) will always be 0, 1

so can think of \(\int_{\gamma} \frac{f'(z) \, dz}{f(z) - a} \) as \(n \) of \(z \)'s \(w = f(z) \) inside \(\gamma \).

Slight generalization: Apply to \(f(z) - a \):

\[
\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z) \, dz}{f(z) - a} = \sum_{j} n(z_1, z_j(a))
\]

\(z_j(a) \) are pts. for which

\(f(z_j(a)) = a \),

i.e. solns to \(f(z) = a \).

(need that \(f(z) \neq a \) on \(\gamma \), of course)

Slight reformulation: \(f : \gamma \to \mathbb{C} \) closed curve, write \(w = f(z) \) then think of \(\delta \) as lying in \(w \)-plane.

\[
\begin{align*}
n(\delta; a) & \overset{\text{def}}{=} \frac{1}{2\pi i} \int_{\delta} \frac{dw}{w-a} \\
& = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z) \, dz}{f(z)-a} = \sum_{j} n(z_1, z_j(a))
\end{align*}
\]

Since \(n(\delta; a) \) is constant on regions defined by \(\delta \), then

if \(a, b \) in some region:

\[
\sum_{j} n(z_1, z_j(a)) = \sum_{j} n(z_1, z_j(b))
\]

In words, \(f \) takes values \(a, b \) same number of times if \(a \) suff. close to \(b \) inside \(\gamma \).

Thus: \(f(z) \) analytic in nbhd of \(z_0 \), \(f(z_0) = w_0 \), with \(f(z_0) - w_0 \) having 0 of order \(n \) at \(z_0 \).

In part:

\(f(z) \neq w_0 \)

for suff. small \(\epsilon > 0 \), \(\delta > 0 \) s.t. for all \(z \) with \(|z - z_0| < \delta \)

\(f(z) - a \) has \(n \) roots in a disk \(|z - z_0| < \epsilon \).
As a special case for use in theorems, take $a = \text{circle of radius } r$ around single solution to x.

\[\frac{1}{\sum_n} \frac{1}{\sum_n} \]
If \(\epsilon \) is so that \(z_0 \) is only \(0 \) of \(f(z) \) in \(\mathbb{D} \),

(can be done since zeros isolated). Apply above result with \(\delta = C(z_0, \epsilon) \),

\[f(z) - w_0 \]

Let \(\delta = f(z) \). By construction \(f(z) \neq w_0 \) on \(\delta \),

so the result applies.

So \(\exists \delta > 0 \) s.t. \(B(w_0, \delta) \cap \delta = \emptyset \). This is desired \(\delta \).

(Note: by picking \(\epsilon \) sufficiently small, we can assume so that \(f(z) = a \) has multiplicity 1.

Corollary: (Open Mapping Thm.) \(\Omega \) open, conn., \(f \) non-const. analytic function on \(\Omega \),

then \(f \) maps open sets in \(\Omega \) to open sets.

(since previous thm. showed \(f(B(z_0, \epsilon)) > B(w_0, \delta) \))

Corollary 2: (Maximum principle) \(f \) analytic, non-const. on \(\Omega \), then

\[|f(z)| \] has no maximum on \(\Omega \).

if \(\delta > 0 = f(z_0) \), then \(\exists \delta \) \(B(w_0, \delta) \subset f(B(z_0, \epsilon)) \)

So \(\exists \) point \(w \in B(w_0, \delta) \) with \(|w| > |w_0| \). So \(f(z) \) not maximum.

Alternate (positive) formulation:

\(f(z) \): continuous on compact set \(E \), analytic on interior, then \(\max f(z) \) is attained on the boundary of \(E \).

if \(f \) has a max on \(E \), since \(E \) assumed compact. If max occurs at \(z_0 \)
in interior, then \(f \) must be constant on component of \(E \) containing \(z_0 \).

(\(\sigma \) max also attained on boundary if this component \(E \) boundary of \(E \).)