Explore properties of Riemann zeta function (analytic continuation / functional equation) and their application (via contour integration) to the prime number theorem.

Zeta function \(\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \quad C \to C \)

(Weierstrass' Theorem)

General Theorem: \(f_n \) analytic in \(\Omega - n \)

\(f_n(z) \to f \) in \(\Omega \): region for which each \(z \in \Omega \)

has \(z \in \Omega - n \land n \in \mathbb{N} \)

uniformly on every compact subset of \(\Omega \).

Then \(f \) is analytic in \(\Omega \)
(and \(f_n \to f \) uniformly on every compact subset of \(\Omega \))

One of Cauchy's integral formula: Given any \(a \in \Omega \),
pick closed disk contained in \(\Omega \) : \(B(a,r) \).

Then \(f_n(z) = \frac{1}{2\pi i} \oint_{C(a,r)} \frac{f(s)}{s-z} \) for \(z \in B(a,r) \).

Take limit as \(n \to \infty \) uniform convergence gives

Similar formula for derivatives via integral formula.

\(f(z) = \frac{1}{2\pi i} \oint_{C(a,r)} \frac{f(s)}{s-z} \) for \(z \in B(a,r) \).

Some fact we used for existence of power series:

If continuous, \(f = \lim_n f_n \)
then \(\int f \, dz = \lim_n \int f_n \, dz \). cf. Ahlfors p. 36
for analytic continuation: Better to consider
\[\xi^*(s) = \pi^{-s/2} \Gamma(s/2) \xi(s). \]
\(\Gamma \) is Gamma function

Then \(\xi^*(s) \) extends to meromorphic function of \(\mathbb{C} \)

with simple pole at \(s = 1 \),
satisfying the functional equation:
\[\xi^*(s) = \xi^*(1-s). \]

What is \(\xi^* \)-function? Why natural?

Answer comes from study of functions with prescribed zeros or poles.

Easy enough when # of zeros/poles finite. What if infinite?

Given \(f \) meromorphic on \(\Omega \).

One idea: \(a_i \) pole, then let
\[P_i \left(\frac{1}{z-a_i} \right) \] be singular part of Laurent expansion of \(f \) at \(z = a_i \).

Consider
\[f(z) = \sum_{i \in \text{ poles}} P_i \left(\frac{1}{z-a_i} \right) + g(z) \]

remain analytic in \(\Omega \) if only many poles \(\sum P_i \left(\frac{1}{z-a_i} \right) \) may not converge.

Theorem (Mittag-Leffler): \(\xi(s) \) : cx. numbers \(\lim_{i \to 0} |a_i| = \infty \)

and \(P_i \) : polynomials w/o const. term.

Then there are functions \(f \) meromorphic on \(\mathbb{C} \), with poles at \(a_i \),

singular parts \(P_i \).

All such functions can be written in form:
\[f(z) = \sum_{i} \left[P_i \left(\frac{1}{z-a_i} \right) - p_i(z) \right] + g(z) \] (4)

\(p_i \) : suitably chosen poly., \(g(z) \) : entire.
If: w.l.o.g., assume none of \(a_i \) are 0. (else shift function)

Then \(P_i \left(\frac{1}{z-a_i} \right) \) is analytic for \(|z| < |a_i| \), so has

Taylor series expansion at origin. Then let \(p_i(z) \) be Taylor polynomial

\[P_i \left(\frac{1}{z-a_i} \right) = p_i(z) \]

at 0 with remainder

By Cauchy’s inequality: if max of \(|p_i(z)| \) on

\[|z| \leq |a_i|/2 \]

is given by \(M_i \), then

the remainder

\[P_i \left(\frac{1}{z-a_i} \right) - p_i(z) = \left(\frac{1}{2\pi i} \right) \oint_C \frac{F(s)}{(s-a_i)^{n+1}} \frac{ds}{s} \]

so

\[|P_i \left(\frac{1}{z-a_i} \right) - p_i(z)| \leq \frac{1}{2\pi} M_i \left(\frac{2|z|}{|a_i|} \right)^{n+1} \left(\frac{|z|}{|a_i|} \right)^{n+1} \]

where \(C = C(0, |a_i|/2) \) and we restrict \(z \to B(0, |a_i|/4) \).

If we choose \(n_i \) large enough, e.g.,

\[2^n_i > M_i \cdot 2^i \]

so that

the RHS of the above inequality will be

\[2^n_i \left(\frac{2|z|}{|a_i|} \right)^{n_i+1} \]

and

\[|z| \leq |a_i|/4 \]

so

\[z \cdot M_i \cdot 2^{-(n_i+1)} \leq z^{-i} \]

for \(|z| \leq |a_i|/4 \).

Claim: RHS of (‡) in theorem converges uniformly on any disk except at poles,

and hence represents meromorphic function.

Write sum as \(h(z) := \sum_i \frac{1}{z-a_i} - p_i(z) \)

finite sum, \(p_i(z) \) poly.

holom. for \(|z| \leq R \) since

thus our estimate applies.
this proves result since any other if meromorphic with these properies will
have \(f(z) - h(z) \) holomorphic.

Example: \(\frac{\pi^2}{\sin^2 \pi z} \), which has double poles at all integers (and nowhere else in \(\mathbb{C} \))

\[\lim_{z \to \infty} \frac{\sin \pi z}{z} = \frac{1}{\pi z^2} \]

Singular part: at \(z = 0 \): of the form \(\frac{c}{z^2} + \frac{c_1}{z} + \phi(z) \).

Multiply by \(z^2 \), take limit as \(z \to 0 \),

\[c_{-2} = 1, \quad \text{and} \quad \sin^2 \pi z \text{ even, so } c_1 = 0. \]

Then by periodicity, \(\sin^2 \pi (z-n) = \sin^2 \pi z \), the singular part is the same at all integers: \(\frac{1}{(z-n)^2} \).

Thus Mittag-Leffler's Theorem tells us that

\[\frac{\pi^2}{\sin^2 \pi z} = \sum_{n=0}^{\infty} \frac{1}{(z-n)^2} + g(z) \]

since \(\sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} \) is convergent for any \(z \not= n \), integer

and absolutely conv. on any compact set.

so we don't need to correct with Taylor polys.

\[\frac{1}{\sin^2 \pi z} \to 0 \]

as \(|z| \to \infty \) uniformly.

\[\cosh y = \frac{e^y + e^{-y}}{2} \to \infty \]

as \(|y| \to \infty \).