Last week: meromorphic functions with prescribed zeros/poles (+ singular parts)

For poles: Mittag-Leffler Thm \(\exists \{a_n\} \text{ with } |a_n| \to \infty \text{ as } n \to \infty \)

\[S_n: \text{ polynomials w/ no const. term} \]

such \(S_n \) then there exists \(f, \text{ meromorphic w/ poles } \{a_n\}, \text{ singular parts } S_n \)

Any \(f \) is of form:

\[\sum_n \left(S_n \left(\frac{1}{z-a_n} \right) + p_n(z) \right) + g(z) \]

for some polynomials \(p_n \), and \(g \) analytic, and such that series converges absolutely (entire)

Hidden: there aren’t many good choices \(p_n \), so that series converges absolutely.

Best choice: \(p_n \): a Taylor polynomial for

most natural \(S_n \left(\frac{1}{z-a_n} \right) \text{ of sufficiently high degree} \)

in any other choice \(p_n^*(z) \) differs by abs. conv. series which can be absorbed into the \(g \).

Example: \(\pi \cot \pi z = \sum_n \left(\frac{1}{z-n} + \frac{1}{n} \right) \) (\(p_n \): const. terms of Taylor exp. of \(\frac{1}{z-n} \))

For zeros: Use products not sums. \(g = 0 \)

Fix naive guess: \(\{a_n\} \text{ with } |a_n| \to \infty \)

Any such \(f \) with zeros at \(\{a_n\} \) is of form: \(f: \text{analytic} \)

\[f(z) = e^{g(z)} \prod_n \left(1 - \frac{z}{a_n} \right) \]

for some \(g \) entire analytic.

Just as with sums, correct terms in product so it absolutely converges.
To summarize:

\[\prod_{n=1}^{\infty} \left(1 + a_n\right) \] (where we assume \(1 + a_n \neq 0\)) converges if and only if

\[\sum_{n=1}^{\infty} \log \left(1 + a_n\right) \] (where summands represent principle branch of log.)

for absolute convergence, even simpler since

\[\sum_{n=1}^{\infty} \left| \log (1 + a_n) \right| \] converges iff

\[\sum_{n=1}^{\infty} |a_n| \] converges.

(=think Taylor expansions.

In particular \(\lim_{z \to 0} \frac{\log (1 + z)}{z} = 1 \)

i.e. since \(|a_n| \to 0\) if (either)

scores converge absolutely, we say

\[\prod_{n=1}^{\infty} \left(1 + a_n\right) \] converges absolutely.

Similar equivalences are true for uniform convergence on compact sets,

between products and corresponding sums.

Back to our original question:

How to make sense of:

\[f(z) = \prod_{n=1}^{\infty} e^{g(z)} \left(1 - \frac{z}{a_n}\right) \]

converges absolutely if and only if

\[\sum_{n=1}^{\infty} \left| \frac{z}{a_n} \right| \] converges, i.e. if \(\sum_{n=1}^{\infty} |\frac{1}{a_n}| \) converges

so \(\left| \frac{z}{a_n} \right| \to 0 \)

(\text{and thus convergence is also uniform on compact sets.})

So, \(|f(z)| \to 0 \)

\[\text{for all } z
\]

which gives simultaneous convergence.

Need a correction...
For poles, we had modified the singular part:

$$\sum_i P_i \left(\frac{1}{z-a_i} \right) - p_i(z)$$

by $p_i(z)$: Taylor polynomials for $P_i \left(\frac{1}{z-a_i} \right)$ at origin.

Here, given $\sum a_n$ with $|a_n| \to \infty$ as $n \to \infty$,

we ask for polynomials $p_n(z)$ such that

$$\prod_{n=1}^\infty \left(1 - \frac{z}{a_n} \right)^{p_n(z)}$$

converges to entire function.

(Or equivalently, so that $\sum_n \left[\log \left(1 - \frac{z}{a_n} \right) + p_n(z) \right]$ converges.)

So take $p_n(z)$ to be the m_n-th Taylor poly of $\log \left(1 - \frac{z}{a_n} \right)$ for $m_n >> 0$.

Essentially a repeat of our earlier arg.

Thm (Weierstrass): \(\exists \) entire function with arbitrarily prescribed zeros $\sum a_n$

provided $|a_n| \to \infty$ as $n \to \infty$ (if sequence infinite)

Every such function is of form:

$$f(z) = e^{g(z)} \prod_{n=m_1}^{m_2} \left(1 - \frac{z}{a_n} \right)^{\frac{y}{a_n}} \cdots \frac{1}{m_n (\frac{z}{a_n})^{m_n}}$$

m_n chosen so that prod. converges to entire function.

Corollary: If g is meromorphic on Ω, then

then $g = h_1/h_2$ h_1, h_2 analytic on Ω.

Proof: Let f as above with a_i poles of g. Then $f \cdot g$ is entire. \(\Box \)
In fact
\[
\log\left(1 - \frac{\pi}{a_n}\right) + \phi_n(z) = -\frac{1}{m_n + 1} \left(\frac{\pi}{|a_n|}\right)^{m_n + 1} + \text{higher order terms}
\]

Fix R, consider only $|a_n| > R$ when analyzing convergence for $|z| \leq R$

Then \(|r_n(z)| \leq \frac{1}{m_n + 1} \left(\frac{R}{|a_n|}\right)^{m_n + 1} \left(1 - \frac{R}{|a_n|}\right)^{-1} \)

so suffices to show \(\sum_{n=1}^{\infty} \frac{1}{m_n + 1} \left(\frac{R}{|a_n|}\right)^{m_n + 1} \) converges. (**)

so \(m_n \) can be chosen so that:

(choose \(m_n = n \), for example)

Obtain geometric series. Note degree of \(\phi_n(z) \), which we've been calling \(m_n \), may vary with \(n \). But in practice, can often obtain convergence by choosing \(m_n = h \), fixed const. indep. of \(n \). (Just as in our examples with Mittag-Leffler sums.)

If so, then \(\frac{\pi}{|a_n|^{h+1}} \) may be removed from

so we require \(\sum_{n=1}^{\infty} \frac{1}{|a_n|^{h+1}} \) to converge

Let \(h \) be smallest such integer (how allowed)

Then we have a canonical expression for the product:

\[
\prod_n \left(1 - \frac{\pi}{a_n}\right)e^{\frac{\pi}{a_n} + \cdots + h\left(\frac{\pi}{a_n}\right)^h}
\]

and for the function:

\[
f(z) = z^m e^{g(z)} \prod_n \left(1 - \frac{\pi}{a_n}\right)e^{\frac{\pi}{a_n} + \cdots + h\left(\frac{\pi}{a_n}\right)^h}
\]

Define genus \((f)\)

\[
\max\left(\deg(g), h\right)
\]

if \(g \) may be taken to be unimodal.
Example: \(\sin \pi z \) is zero at integers

Want smallest \(h \) such that \(\sum \frac{1}{|a_n|} z^{h+1} \) converges

i.e. \(\sum \frac{1}{n^{h+1}} \) converges. \(\Rightarrow \) Then \(h = 1 \)

\(\deg h = 1 \)

\(\downarrow \)

\(\sum \frac{1}{n^{h+1}} \)

So our canonical product takes form: \(\sin \pi z = z e^{g(z)} \prod \left(1 - \frac{z}{n} \right) e^{\frac{z}{n}} \)

To determine genus, we need to know \(\deg(g) \).

Take logarithmic derivative on both sides (justified by convergence of product on compact sets)

\(\pi \cot \pi z = \frac{1}{z} + g'(z) + \sum_{n=0} \left(\frac{1}{z-n} + \frac{1}{n} \right) \)

But from our earlier Mittag-Leffler formula, we know \(g'(z) = 0 \)

\(\Rightarrow g(z) \) constant.

Since \(\lim_{z \to 0} \frac{\sin \pi z}{z} = \pi \), then \(e^{g(0)} = \pi \)

So \(\sin \pi z = \pi z \prod \left(1 - \frac{z}{n} \right) e^{\frac{z}{n}} \). (genus 1)

Genus telling us about growth of function.

\[\text{order}(f) = \lim_{R \to \infty} \frac{\log \log M(R)}{\log R} \]

\[M(R) : \text{max of } f \text{ on circle of radius } R \text{ centered at origin} \]

Then \(h \leq \text{order}(f) \leq h+1 \). \(h \): genus