Recap: we've been studying Riemann surfaces.

- collection of compatible local topological isomorphisms to open sets of \(\mathbb{C} \)
- holomorphic \(\phi \)
- "charts"

Study holomorphic functions / meromorphic functions

\[
F : X \rightarrow \mathbb{C}
\]

Local theory is same as that for

- open mapping theorem
- identity theorem (agrees on limit pt)
- discreteness of preimages under \(F: \text{holom.} \)

On Friday, began to study invariants.

Multiplicity of \(F \) at \(p \in X \):

- order of vanishing of Taylor series
 at \(\phi_x(p) = z_0 \) in coord \((z - z_0)\).
- as expansion \((w - w_0)\) (with \(z_0 \mapsto w_0 \))

Under \(\phi_y \circ F \circ \phi_x^{-1} \)

Multiplicity is "generically" equal to 1. \((\forall p : \text{mult}_p(F) > 1\) is discrete in \(X \))

E.g. \(z \mapsto z^2 \) is holomorphic map. \(\text{mult.} = 3 \) at \(z = 0 \) and \(= 1 \) elsewhere.

B/c \(\text{mult.} \) at \(z = 5 \): \(W = W_0 \)

\[
\frac{5^3}{5^3} = \sum_{n=1}^{3} a_n (z-5)^n \quad a_n = \frac{f^{(n)}(5)}{n!} \quad f^{(1)}(5) \neq 0
\]
Example 2: \(f \): meromorphic function on \(X \), then let \(F \) be associated holomorphic map:

\[
F(p) = \begin{cases}
 f(p) & \text{if } p \text{ not pole} \\
 \infty & \text{if } p \text{ pole}
\end{cases}
\]

If \(p \) not a pole, then \(\text{mult}_p(F) = \text{ord}_p(f - f(p)) \).

In particular if \(p \) is a zero, \(\text{mult}_p(F) = \text{ord}_p(f) \).

If \(p \) is a pole, use chart from stere. proj. from south pole.

or map \(\mathbb{S} \to \mathbb{S} \) equivalently. Get \(\text{mult}_p(F) = -\text{ord}_p(f) \).

(think in terms of chart centered at origin)

Use the local invariant to make global one — degree \((F) \), \(F: X \to Y \) holom. \(X, Y \) compact.

Given any \(y \in Y \), consider \(\sum_{p \in F^{-1}(y)} \text{mult}_p(F) \).

If \(X, Y \) compact, then \(F^{-1}(y) \) finite set, so sum is well defined.

Proposition: This sum is a fixed constant, independent of \(y \in Y \). (called deg \((F)\))

If \(y \in Y \), show that \(y \mapsto \sum_{p \in F^{-1}(y)} \text{mult}_p(F) \) is locally constant function.

Since \(Y \) connected, then must be constant function. i.e., for every \(y \in Y \)

function is constant.

Lemma: if \(F^{-1}(y) = \{x_1, \ldots, x_n \} \in X \), then

- if \(y' \) near \(y \), \(F^{-1}(y') \) contained in nbhd of \(x_i \).

Proof of Lemma: if \(y' \) arbitrarily close to \(y \) whose precimages under \(F \) are not

all contained in nbhd of \(x_i \). Then construct sequence of \(x' \)'s outside nbhd of \(x_i \)

whose images under \(F \) converge to \(y \).
Since X compact, can extract a convergent subsequence $p_n \rightarrow y$ in X with $p_n \rightarrow x \in X$, some x, \(\lim F(p_n) = y \). But since F continuous, must have $F(x) = y$. But this is a contradiction since then $x \in \{ x_1, ..., x_n \}$ and is limit pt of p_n's which lie outside all nbhds of x.

So to analyze whether our sum is locally constant, we can use charts for fixed y and $F^{-1}(y) = \{ x_1, ..., x_n \}$.

Here we've seen that we can plot little charts: centered at x_i and at y.

and of form $W = z_i^{m_i}$ (z_i : local coord for x_i) m_i : some integer ≥ 1.

But each of $z_i \rightarrow z_i^{m_i}$ has property that $\deg (z_i \rightarrow z_i^{m_i})$ is locally const.

so in total $\deg (F) = \sum m_i$.

and we're done.

Corollary: X: compact Riemann surface f: meromorphic with single \qquad \text{from } X \rightarrow C^\infty \text{ as}$

$\text{ on } X$ \begin{itemize}
 simple pole
\end{itemize}

C^∞: \qquad f: single simple pole \Rightarrow \text{ if } F: X \rightarrow C^\infty \text{ corresponds to } f$

\text{ then } $\deg (F) = - \text{ord}_p (f)$ where p: pole.

$= 1$.

But degree one map is 1-1, so must have isomorphism

(earlier we proved non-constant holomorphic map $f: X \rightarrow Y$ is onto

if X compact)
Proposition: \(f \) non-constant meromorphic function on \(X \) compact. Then
\[
\sum_{p} \operatorname{ord}_{p}(f) = 0.
\]

Let \(F \) be the associated holomorphic map \(X \to \mathbb{C} \).

\(z_i \) : pts. of \(X \) mapping to \(0 \) (zeros)
\(p_i \) : pts. of \(X \) mapping to \(\infty \) (poles)

\[
\deg(F) = \sum_{i} \operatorname{mult}_{z_i}(F) = \sum_{j} \operatorname{mult}_{p_i}(F)
\]
\[
= \sum_{i} \operatorname{ord}_{z_i}(F) = -\sum_{j} \operatorname{ord}_{p_j}(F)
\]

But
\[
\sum_{p} \operatorname{ord}_{p}(F) = \sum_{i} \operatorname{ord}_{z_i}(F) + \sum_{j} \operatorname{ord}_{p_j}(F)
\]
\[
= \deg(F) - \deg(F) = 0.
\]

Previously asserted this for Riemann sphere using that all meromorphic functions were rational functions. (i.e. used strong characterization)

Next: relate degree to topology through genus. Discuss topology basics for a bit. Often use language of simplicial complexes:

\[
\text{simplices: } \quad 0 \quad 1 \quad 2 \quad 3 \quad \ldots \quad (\text{has general coord. definition } \sum_{i=1}^{n} x_i = 1, \ x_i > 0)
\]

\[
\text{simplicial complex: collection of simplices glued so that intersection of any two } 6_1, 6_2 \text{ is a face of both } 6_1, 6_2 \quad \text{e.g. Hatcher Ch.2}
\]

Euler using them to construct polyhedra, later used to study manifolds via homeomorphisms from simplices to \(X \) with compatibility properties.