On Friday, we were exploring genus of compact Riemann surfaces, cut out of \(\mathbb{P}^2(\mathbb{C}) \) by homogeneous polynomials of small degree.

Linear: \(S^2 \cong \mathbb{P}^1(\mathbb{C}) \)

Quadratic: \(F(x,y,z) = v^T \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} v \) with \(v = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \)

We had shown \(X_F: R.S. \) made from \(F \cong S^2 \) if we could show that \(A_F \cong I_3: 3 \times 3 \) identity matrix with \(A \cong B \) if \(\exists C \) such that \(C^T A C = B \).

(This relation says, since \(A \) arbitrary, that all \(R.S. \) defined by quad. form are isomorphic. Showed \(F(x,y,z) = x^2 - y^2 \) is isom. to \(S^2 \).)

Left to show \(A = C^T C \) with \(C \) invertible.

Error from Friday: Can't use spectral theorem that allows us to diagonalize. For \(\mathbb{C} \). matrices, \(A \) requires \(A = A^* \).

Can't use \(A = U^T D U \) with \(U \) upper triangular.

Since this requires non-vanishing of minors.

So followed Clemens: if \(A \) not \(0 \)-matrix, then can find \(V \)

\[\langle v_1, v_1 \rangle = 1 \] where \(\langle v_1, v_1 \rangle = v_1^T A v_1 \)

Find invertible matrix \(L \) s.t. \(L(v_1) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \) and so that \(L^T A L \) has form:

\[\begin{pmatrix} 1 & 0 & 0 \\ 0 & \text{sym} & \text{sym} \\ 0 & \text{sym} & \text{sym} \end{pmatrix} \]

Repeat. Either \(d_1 e_1 f_1 = 0 \) or \(\exists v_2 \)

with \(\langle v_2, v_2 \rangle = 1 \), make change of vars. Arrive at \(C \).

Find that \(A \)'s grouped into equivalence classes by rank. (# of 1's on diagonal).

Since \(A \) invertible, has full rank.
Fact: Any symmetric A is expressible as $T^T T = A$ for some invertible T.

(A is diagonalizable, write as $A = D C D^{-1}$ with D diagonal, composed of eigenvalues. λ_i.

If A symmetric, then can write $A = U^T D U$ with U lower triangular, U^T upper triangular

And $CC^T = I$ so get $A = \begin{pmatrix} D_{11} & D_{12} & 0 \\ D_{12} & D_{22} & 0 \\ 0 & 0 & \cdots \end{pmatrix}$

If A symmetric, then can write $A = U^T D U$

That is, the Riemann surface for any symmetric matrix A is isomorphic to the identity matrix, that is they are all isomorphic.

Just pick convenient choice of F to study gens.

$F = x^2 - y^2$ is non-singular. Then have iso. $U^T \sim X F$

Check easily this is holomorphic map.

More clever: Reconstruct compact Riemann

More generally: X, Y R.S. with open sets $U \subset X$, $V \subset Y$ and homeom. $\phi: U \to V$, then "glue" X and Y by forming $\bar{Z} = X \sqcup U \rightarrow Z = \{ x \in X - U, y \in Y - V, (x, \phi(x)) \text{ if } x \in U \}$

Prototype: Riemann sphere: obtained by gluing two copies of C

(had two charts: proj. from north/south poles which mapped onto C)

overlap C^* with transition map $\phi(z) = 1/z$.

identify points in overlap according to ϕ.
topology on \mathcal{Z}: quotient topology from $\pi: X \sqcup Y \to X \sqcup Y / \phi \cong \mathcal{Z}$

so $\Omega \in \mathcal{Z}$ is open iff $\pi^{-1}(\Omega)$ open in $X \sqcup Y$.

(this of course works for $X \sqcup Y$ topological spaces, but ...)

We can further put complex structure on \mathcal{Z} if $\phi: U \to V$ is

isomorphism of Riemann surfaces.

Prop: $U \subset X, V \subset Y$ R.S. $\phi: U \to V$ isom.

exists structure on $\mathcal{Z} = X \sqcup Y / \phi$ s.t. inclusions of X, Y into \mathcal{Z} are holomorphic maps. (Resulting \mathcal{Z} is conn., not nec. Hausdorff. If Hausdorff, then \mathcal{Z} is a R.S.)

Let $j_x: X \to \mathcal{Z}$ be natural inclusions. Given chart $\psi: U_d \to \psi(U_d)$ on X

then $j_x(U_d)$ is open in quotient topology

(the set $U_d = U_d \cap (X-U) \cup U_d \cap U$

so $\pi^{-1}(j_x(U_d)) = U_d \sqcup \phi(U_d \cap U)$

charts: $\psi_x \circ j_x^{-1}$ with ψ_x: chart on X

$\psi_y \circ j_y^{-1}$ with ψ_y: chart on Y

homeomorphisms which cover \mathcal{Z}. Check compatibility, which is easy since

charts agree only on identified U and V, related by isom. ϕ.

So reduces to compatibility of original charts.

Moreover, each of these maps must be

charts if j_x, j_y are to be holomorphic.
Now use the giving principle for affine curves.

Consider smooth affine curve given by

\[X = \{ (x,y) \mid y^2 = h(x) \} \quad \text{h has degree } 2g+1 \text{ or } 2g+2, \text{ distinct roots.} \]

\[U = \{ (x,y) \in X \mid x \neq 0 \} \]

\[Y = \{ (z,w) \mid w^2 = k(z) \} \quad k(z) := z^{2g+2} h(z) \quad \text{(poly. in } z \text{ with distinct roots)} \]

\[V = \{ (z,w) \in Y \mid z \neq 0 \} \]

\[\phi : U \to V \quad \text{isomorphism} \]

\[(x,y) \mapsto (z,w) := \left(\frac{1}{y}, \sqrt[2g+1]{x} \right) \]

\[(\frac{1}{z}, \frac{1}{w^{2g+1}}) \leftrightarrow (z, w) \]

Claim: \[\mathbb{Z} := X \amalg Y / \phi \]

is compact Riemann surface of genus \(g \).

(remember \(g \) appeared in the degree of the affine curves \(h, k \) defining \(x, y) \)

Proof of claim: compactness follows since \(\mathbb{Z} \) is union of compact sets (viewed as subsets of \(\mathbb{C} \) via inclusion)

\[\mathbb{Z} = \{ (x,y) \in X \mid \|x\| \leq 1 \} \quad \text{and} \quad \mathbb{Z} = \{ (z,w) \in Y \mid \|z\| \leq 1 \} \]

Calculate genus using Horwitz formula, as follows:

\[X = \{ (x,y) \mid y^2 = h(x) \} \]

has \(\alpha_0 \) map, proj. to \(X \), which is holomorphic. Extend this to a map \(\pi : \mathbb{Z} \to \mathbb{C}_0 \) (defined at points in \(Y \setminus V = \{ (0, w) \mid w^2 = k(0) \} \) so that \(\pi \) continuous.

(holomorphic map as meromorphic function)

\[\deg(\pi) = 2 \] since \(y^2 = c \) has 2 solns if \(c \neq 0 \).

Branch points are zeros (i.e. roots) of \(h(x) \) and \(0 \) if \(\deg(h(x)) \) odd.
Thus, for either case, have $2g + 2$ points with multiplicity 2. These appear in "error" term of Hurwitz formula.

$$-\chi(z) = \deg(\pi) \cdot (-\chi(C_\infty)) + \frac{\text{error}}{2g+2}$$

$$\chi(z) = -4 + 2g + 2 = 2g - 2 \quad \text{i.e. genus of } \mathcal{Z} \text{ is } g.$$

- Meromorphic functions on hyperelliptic Riemann surfaces.

 Described similarly to meromorphic functions on elliptic curve C/Λ.

 These we broke up elliptic functions into even, odd, used g, g'

 Here introduce similar involution (order 2 automorphism)

 of \mathcal{Z}:

 $6: \mathcal{Z} \to \mathcal{Z}$

 taking $(x, y) \in \mathcal{Z} \mapsto (x, -y)$

 $(z, w) \in \mathcal{Z} \mapsto (z, -w)$

 It is a holomorphic map on \mathcal{Z}, so given merom. f on \mathcal{Z}

 then $6^*f := f \circ 6$ is merom. on \mathcal{Z}.

 And $f + 6^*f$ is 6^*-invariant, since $6^2 = \text{id}$.

 Notice that projection $\pi: \mathcal{Z} \to C_\infty$ commutes with 6: $\pi \circ 6 = \pi$.

 So basic example of 6^* invariant function is pullback under π of meromorphic function r (for "rational")

 on C_∞.

 Lemma: g merom. on \mathcal{Z} s.t. $6^*g = g$. Then $\exists f! r \in C_\infty$

 s.t. $g = r \circ \pi$.