If we are being careful about base points, then a given base point in Y may not lie in W. So take path from basepoint y_0 to point y_1 in W, call it α, then apply small loop around b—call it β, then traverse back along α in opposite direction $= \alpha^{-1}$.

Think of α as an identification of fiber of F over y_0 and fiber of F over y_1. If we view the fiber as labelling then different α may give different identifications of labelling. Thus elts. of S_d are only determined up to conjugation, but this preserves cycle type.

Conclusion: Given non-constant, proper holomorphic map $F : X \to Y$,
we obtain an integer (d), a discrete set $B \subset Y$, and a (branch points)
transitive gp. homom. $\rho : \pi_1(Y \setminus B) \to S_d$, up to conjugacy.

(Monodromy repn)

Thm: Let Y be a Riemann surface, B a discrete set in Y.

If $d \geq 1$, integer, $\rho : \pi_1(Y \setminus B) \to S_d$, transitive gp. hom., then there exist a pair (F, X) with $F : X \to Y$ a proper holomorphic map of Riemann surfaces s.t. its monodromy repn is ρ. Such (F, X) are unique up to equivalence.

If H By the theory of covering spaces, if give a subgroup of index d of $\pi_1(Y \setminus B)$
then we may form a cover $F : X \to Y \setminus B$ of degree d.

Pick an index $\in \{1, \ldots, d\}$, say 1, consider $[y] \in \pi_1(Y \setminus B)$ s.t. $\rho([y])(1) = 1$
That is, \(\pi \) maps to a permutation fixing 1. These \(\pi \) form a subgroup \(\Pi \) of index \(d \). Take corresponding cover.

This realizes the monodromy rep\(\pi \) by our earlier abstract description.

Initially \(X_0 \) is just connected topological space. But since \(Y \), and hence \(Y \setminus B \), are R.S., then make charts for \(X_0 \) via composing covering map with charts for \(Y \setminus B \). Requiring that \(F_0 \) is holomorphic with respect to R.S. structure on \(X_0 \) specifies it uniquely.

Have: \(F_0 : X_0 \rightarrow Y \setminus B \) \(\text{Word} = F : X \rightarrow Y \).

Need to explain how to fill in pts. of \(F^{-1}(B) \) over branch points \(B \).

Pick \(b \in B \), small disk around \(b \), \(Y \) : boundary so that \(D_b \).

\(\Gamma(Y) \) defines cong class in \(\pi_1(Y \setminus B) \). Apply monodromy rep\(\pi \), then

\[\rho(\pi) \text{ = permutation of cycle type } m_1, \ldots, m_k \text{ s.t. } \sum m_j = d. \]

Connected components of \(F^{-1}_0(D_b \setminus b) \) correspond to cycles.

Pick one, \(z \). Then \(z \) is cover of \(D_b \setminus b \) of degree \(m_j \).

With generator of \(\pi_1(D_b \setminus b) \) mapping to an \(m_j \)-cycle.

\[\Rightarrow z \cong D^k : \text{disk in } C \text{ with map } z \rightarrow z^{m_j} \]

Taking us from \(z \rightarrow D_b \rightarrow D^k \).

Consider \(X = X_0 \sqcup / \theta \) where \(D \) is non-punctured disk in \(C \).
So points of $\mathbb{C} \times X_0$ are identified with pts. of $D^* \subset D$ via
ϕ, and unique point not in X_0 is $\phi_0 \in D$.

Know $X_0 \sqcup D/\phi$ is R.S. provided we can show it is Hausdorff.

i.e. given $a, b \in X$, want disjoint open sets U, V containing a, b respectively.

if $a, b \in X_0$, done since X_0 is R.S. so in particular Hausdorff.

Only difficulty: $a \in X_0, b = \phi_0 \in D$. But $F_0 : X_0 \to Y \setminus B$ maps
$a \mapsto F_0(a) \neq b$ so \exists open nbhd N_u of $F_0(a)$ in $Y \setminus B$
which is disjoint from small open nbhd. N_v of b.

$\Rightarrow F_0^{-1}(N_u)$ and $\phi_0 \cup \phi_0^{-1}(F_0^{-1}(N_v))$ are disjoint in X.

[In general can always try construction $X \sqcup D/\phi$ where $D^* \subset \subset X$

When will result be Hausdorff? If and only if

ϕ extends to holomorphic map $\tilde{\phi}$ from X to D.

Picture:

- We don't want closure of \mathbb{C} in X to fill middle.
- (i.e. if point we were trying to "fill" already existed in X)

See p. 66 of Miranda

"Plugging holes in Riemann surfaces"
The fact that F_0 extends to a holomorphic map $F : X \to Y \setminus \bigcup_{b \in B} B_b$ is clear, since locally it is an nth power map, which has unique extension at b.

This isn't the end; we need to repeat this for each cycle in monodromy rep ρ of $[\Sigma]$ for b, then repeat for each $b \in B$.

Then done, upon checking the result is proper. For example if Y is compact, then X compact since it is expressible as union of finitely many compact sets: $F_0^{-1}(Y \setminus D_b)$, D_b : open nbhd. of $b \in B$

so $Y \setminus D_b$ compact

and closures of open discs from hole chalks for cycles in $\rho [\partial D_b]$.

Next time: revisit compactifying algebraic curves (e.g. hyperelliptic)

with new understanding of monodromy / plugging holes.

Wont assume it is smooth. Just polynomial in two variables in \mathbb{C}^2 irreducible, not linear of form $z - z_0$.

Facts: $X = \bigcap_{\ell \in \mathbb{C}^2} P(\ell z) = 0$ then P as above

- X is connected.
- There are only finitely many points (z, w) where $P, \frac{\partial P}{\partial w}$ both vanish.

J: singular set $= \bigcap (z, w) \in X | \frac{\partial P}{\partial z} = \frac{\partial P}{\partial w} = 0$ (finite by fact above)

$X \setminus S$ is Riemann surface. Want to compactify this.