Last time, we were studying singular algebraic curves \(P(\nu, \varphi) = 0 \).

\[
\Sigma^+ := \pi_2^{-1}(\pi_2(\Sigma \cup F)) \quad \Sigma: \text{singular points}
\]

\[F: \text{zeros of highest power of } \nu \text{ in } \mathbb{P}(\nu, \varphi) \]

\[\pi_2 : X \setminus \Sigma^+ \longrightarrow S^2 \setminus E \quad \text{where} \]

\[E = \pi_2(\Sigma) \cup F \cup \{0\} \]

proper holomorphic map \(\sim \) monodromy rep \(\rho : \pi_1(S^2 \setminus (E \cup B)) \longrightarrow S_4 \)

\[B: \text{branch pts} \]

Example: \(W^2 - z^2(1-z) = 0 \)

Single \# singularity at \((0,0)\).

branch point at \(z = 1 \) (mult. 2)

\[B \cup E = \{0, 1, 0, 3\} \quad \pi_2 : \text{deg. 2} \]

Analyse monodromy rep \(\rho : \pi_1(S^2 \setminus \{0, 1, 0, 3\}) \longrightarrow S_4 \)

If \(U : \text{nbhd of } 0 \text{ in } S^2 \setminus \{0, 1, 0, 3\} \), \(\pi_2^{-1}(U) \) is disjoint union of two punctured open sets

thus monodromy rep \(\rho \) maps

\[[Y], Y \text{ loop of winding \#1 about } \{0\} \]

\[\rho(1)(2): \text{identity permutation} \]

So to form \(X^* \), attach 2 disks to \(X \setminus \Sigma^+ \), one for each component.

Also attach 1 disk for branch pt \(1 \), 1 disk for \(\{0, 3\} \), each of mult. 2.

What is genus of resulting R.S.? Hurwitz formula: \(\pi_2^\# : X^* \longrightarrow S^2 \quad \text{deg 2} \).
Hermite: \[2g(X^*) - 2 = \text{deg}(\pi_2) (2g(S^2) - 2) + \sum_{p \in X} \text{mult}_p (\pi_2)_1 - 1 \]

\[= 2 \cdot (-2) + 2 \text{ (from branch pts. with mult. 2) } \]

\[\Rightarrow g(X^*) = 0 \text{ so } X^* \text{ isomorphic to Riemann sphere.} \]

Proposition: \(\bar{X} \): homogenized zero locus for \(P(2;w) \), a compact set in \(\mathbb{P}^2(\mathbb{C}) \).

Then natural inclusion \(X \setminus \Sigma^+ \hookrightarrow \bar{X} \) extends to a \((z,w) \mapsto [\bar{z}:w:1] \)

holomorphic map \(X^* \to \mathbb{P}^2(\mathbb{C}) \) mapping onto \(\bar{X} \).

Need to ensure that the inclusion extends to holomorphic map at centers of glued disks making \(X^* \) from \(X \setminus \Sigma^+ \).

Recall that when we paste in disk \(D \), do this by considering covering map from punctured nbhd \(U \) of \((z_0,w_0) \) to punctured nbhd \(V \) of \(z_0 \) given by \(\pi_2 \). Any covering space is itself isomorphic to a disk \(B \setminus D \) with covering map: \(y \mapsto y^m \) for some \(m \).

Identifying \(U \setminus (z_0,w_0) \) with \(B \setminus D \) under homeomorphism \(\phi \), making the following diagram commute:

\[
\begin{array}{ccc}
U \setminus (z_0,w_0) & \xrightarrow{\phi} & B \setminus D \\
(z,w) & \xrightarrow{\pi_2} & D \setminus z_0 \\
\end{array}
\]

where \(w(y) \) given by composition of \(y \mapsto y^m \) and function guaranteed by implicit function theorem.
Last time we proved \(w(y) \) may be extended to a meromorphic function on the whole disk, thus we have
\[
y \mapsto [y^n; w(y); 1] \text{ is a meromorphic map from disk } B \to \mathbb{P}^2(\mathbb{C})\]
But on the other hand, on punctured disk \(B \setminus \{0\} \)
it equals \(y \mapsto [y^{m+n}; y^n w(y); y^n] \) where \(n \) is order of pole at \(y=0 \), so
\[
y^n w(y) \text{ is non-vanishing at } 0.
\]
So we've constructed the "normalization" of \(\overline{X} \).

The example is a general phenomenon - the normalization of singular curves produces compact R.S. with different genus than that of its non-singular counterparts. Elliptic curves: genus 1, singular cubics: genus 0.

Try it for \(w^2 = z^3 \).

Algebraic curves - see Brieskorn. (available electronically from library)
many interesting topics: Puiseux expansions
(factoring in \(\mathbb{P}(\mathbb{C}[w]) \) using fractional powers
algorithms based on Newton polygon)

nice discussion of alternate topologies,
germs of functions.

moduli problem - classify all curves of given genus up to isomorphism.

E.g. elliptic curves: \(J \)-invariant to \(\mathbb{C} \), generalizations to higher genus by Mumford.
A little bit about Puiseux expansions:

For simplicity, suppose \((0,0)\) is our singular pt, so that

\[P(z,w) \text{ has power series expansion } = \sum_{m,n} p_{m,n} z^m w^n, \]

To construct "normalization"

"gluing in disks according to cycle type in monodromy."

So if \(\pi_1\) has degree \(d_1\) as map on \(X \setminus \mathbb{A}^1\), then size of cycles adds to \(d_1\)

Easiest case: monodromy trivial, as in nodal example,

then analyzing function \(z \to P(z, f_i(z)) \) for some holomorphic functions \(f_i\)

and can factor the corresponding \(P\) as:

\[P(z,w) = (w - f_1(z))(w - f_2(z)) \cdots (w - f_{d_1}(z)) Q(z,w) \]

with \(Q \neq 0\) at \((0,0)\).

What if we have cycle of length \(a\)?

This corresponds to local coord map \(z = y^a\)

so analyze \(P(y^a, w)\), and look for factors of the form \(w - f(y^a)\).

If \(w - f(y)\) is a factor, so is \(w - f(sby)\)

\((s = e^{2\pi i/a}, b = 0, \ldots, a-1)\)

(since \(f\) is made from

implies function \(g\) and composite \(y = y^a<\)

\[P(y, w) = \left(w - f(s) \right) \left(w - f(sy) \right) \cdots \left(w - f_{a-1}(y) \right) Q(y,w) \]

with \(z = y^a\).
Substituting, we get \(P(z, w) = (w - f_0(z^{1/a})) \cdots (w - f_{a-1}(z^{1/a})) \)

i.e. adjoin formal variables \(z^{1/a} \) for suitable \(a \), with \(Q(z^{1/a}, w) \)

to obtain factorization \(\sum a_i = d \).
\(W^2 = z^2(1-z) \)

W = tz hits line \(z = t - 1 \) at \(W = -t \)

and hits cubic at \((t^2, t^2) = z^2(1-z) \)

\(z = 1 - t^2 \)

\(W = t - t^3 \)

Gives map \(t \mapsto (1-t^2, t-t^3) \)

sends \(t = \pm 1 \) to the singular pt. \((0,0) \).

\[\phi : \mathbb{C} \to \mathbb{R} \times \text{non-singular curve.} \]