Differential forms – use them even in one-variable calculus, when we write \(\int_a^b f(z) \, dz \). Think of \(dz \) as keeping track of coordinate \(z \) with set of rules for how to manipulate infinitesimal "chunk of area" under transformations of \(z \).

Abstract point of view: Define holomorphic 1-form on open set \(U \subset \mathbb{C} \) to be an expression \(\omega \Rightarrow f(z) \, dz \) with \(f \) holomorphic on \(U \).

(W.r.t. coordinate \(z \))

Then say that \(\omega_1 \) transforms to \(\omega_2 \) if there exists

holomorphic map \(T : U_2 \rightarrow U_1 \) such that \(\omega_2 = g(w) \, dw \quad (w \rightarrow z) \)

\[g(w) = f(T(w)) \frac{dT}{dw} \quad \text{(or equivalently) \quad \omega_2 = f(T(w)) \frac{d(T(w))}{dw} \omega_1} \]

Thus holomorphic 1-form on Riemann surface is compatible collection of 1-forms \(\{ \omega_\phi \} \phi : U \rightarrow V \subset \mathbb{C} \) is chart.

Compatible: \(\omega_\phi \) transforms to \(\omega_{\phi_2} \) under \(T = \phi_1 \circ \phi_2^{-1} \).

Reconsider (real) differential forms in coordinate-free way.

one variable: small displacement \(\Delta x_i = x_{i+1} - x_i \) \(\rightarrow \frac{f(x_i)}{\Delta x_i} \) constant of proportionality

multivariable: \(\omega_{x_i} \): linear transformation \(\mathbb{R}^n \rightarrow \mathbb{R} \) taking \(\Delta x_i \) (new vector displacement) to \(\omega_{x_i}(\Delta x_i) \)

i.e. \(\omega_{x_i} \) is linear functional on space of tangent vectors at \(x_i \) in \(\mathbb{R}^n \) "cotangent vector" at \(x_i \)

1-form is a continuous assignment of cotangent vectors for each pt. \(x_i \in \mathbb{R}^n \).
Lemma: \(f \): smooth, real-valued function on neighborhood \(U \) of origin in \(\mathbb{R}^2 \).

\[\gamma_1: (-\varepsilon_1, \varepsilon_1) \to U \text{ smooth maps \ } \gamma_i(0) = 0. \]
\[\gamma_2: (-\varepsilon_2, \varepsilon_2) \to U \text{ \ } \varepsilon_1, \varepsilon_2 > 0. \]

\[\chi: U \to V \text{ diffeomorphism to open set } V \text{ of } \mathbb{R}^2 \text{ with } \chi(0) = 0. \]

Then (by chain rule) if \(\frac{\partial f}{\partial x_1}(0) = \frac{\partial f}{\partial x_2}(0) = 0 \), then \(\frac{d\gamma_i}{d\tau}(0) = 0 \).

(2) if \(\frac{d\gamma_1}{dt}(0) = \frac{d\gamma_2}{dt}(0) \), then \(\frac{d\gamma_i}{dt}(0) = \frac{d\gamma_i}{dt}(0) \).

If \(S \): 2-dim'l real smooth \((C^m) \) manifold, \(p \in S \).

\(f \): smooth function on \(S \), \(\gamma_i: (-\varepsilon_1, \varepsilon_1) \to S \text{ smooth paths } i=1,2. \)

\(\gamma_i(0) = p \)

Then lemma implies we may define:

\(f \) is "constant to first order" at \(p \) if the derivative of \(f \) (in local coords) near \(p \) vanishes at \(p \).

(Keypoint: lemma implies independent of chart.)

Some fact used before to argue that order of holomorphic/meromorphic function on R.S. is well-defined.

Similarly, say \(\gamma_1, \gamma_2 \) are equal to first order if derivatives w.r.t. local chart at \(p \) one equal.

Define: Tangent space \(T_S p \) of \(S \) at \(p \) is the set of equivalence classes of smooth maps \(\gamma: (-\varepsilon, \varepsilon) \to S \text{ with } \gamma(0) = p \)

where \(\gamma_1 \sim \gamma_2 \) if they are equal to first order at \(p \).
Similarly, the cotangent space T^*S_p of S at p is the set of equivalence classes of smooth functions on open nbhd of $p \in S$, write $f_1 \sim f_2$ if $f_1 - f_2$ constant to first order at p.

Given $f \in C^0(U)$, $p \in U$, there exists corr. elt. in T^*S_p, call it $[df]_p$. Given local coords x_1, x_2 for U, these too are smooth functions, with corr. elt $[dx_1]_p, [dx_2]_p$.

Writing $f = f(x_1, x_2)$

$$[df]_p = \frac{df}{dx_1} [dx_1]_p + \frac{df}{dx_2} [dx_2]_p$$

and clearly $[dx_1]_p, [dx_2]_p$ form a basis of T^*S_p.

To see that $T^*S_p \cong \text{Hom}(T_pS, \mathbb{R})$, note we have a bilinear pairing $T_pS \times T^*S \to \mathbb{R}$

$$(x, f) \mapsto \left. \frac{d}{dt} (f \circ x) \right|_{t=0}$$

Cotangent bundle: $T^*S := \coprod_{p \in S} T^*S_p$.

Smooth 1-form: $\alpha : S \to T^*S$ with α smooth.

So have to check that in local coords, say (x_1, x_2) about p_1

$$\alpha = \alpha_1 dx_1 + \alpha_2 dx_2$$

that $\alpha_1(x_1, x_2), \alpha_2(x_1, x_2)$ are smooth.

As usual, this is independent of choice of chart (check this!) clean rule...
easiest way to define 1-form: Start with smooth function f on all of S.

Take \(d\delta f(p) = \left. \frac{df}{dx_1} \right|_p dx_1 + \left. \frac{df}{dx_2} \right|_p dx_2 \).

But not all smooth 1-forms arise in this way.*

Can also produce them from pullback construction: \(F: S \to Q \) smooth map of \(C^\infty \)-manifolds

\[dF_p: T_S p \to T_Q f(p) \]
\[dF^*: T^* Q f(p) \to T^* S_p \]

given \(\alpha \) smooth 1-form on Q, make \(F^*(\alpha) \) defined by

\[F^*(\alpha)(p) = dF^* (\alpha \circ f) = \alpha \circ F \]

Let \(d: \Omega^1_S \to \Omega^1_S \) as above. It satisfies \(d(fg) = f \, dg + g \, df \).

\[d(F^* f) = F^* (df) \]

Finally define integration for smooth path

\(\gamma: [0,1] \to S \) on 1-form d:

\[\int d = \sum_i \int_{\gamma^{(i)}} \alpha_1 (\gamma_1^{(i)}(t), \gamma_2^{(i)}(t)) \frac{d\gamma_1^{(i)}}{dt} + \alpha_2 (\gamma_1^{(i)}(t), \gamma_2^{(i)}(t)) \frac{d\gamma_2^{(i)}}{dt} \]

\(\gamma^{(i)} \) are pieces of original curve \(\gamma \) lying in individual coordinate charts.

(If, of course, \(\gamma^{(i)} \) partition γ.)

i.e. \([0,1] \to [0,1] \) defining \(\gamma^{(i)} \) partition $[0,1]$.

(+) Write \(\alpha = \alpha_1 \, dx_1 + \alpha_2 \, dx_2 \)

\(\alpha_1, \alpha_2 \) smooth functions.

Equality of mixed partials \(\Rightarrow \) if \(\alpha = df \) then \(\frac{\partial \alpha_1}{\partial x_2} = \frac{\partial \alpha_2}{\partial x_1} \). Necessary condition.

Also sufficient.