Find useful condition to prove F normal. $F = \{ f : \Omega \to \mathbb{C} \}$

Last class F normal \iff F totally bounded in ρ-metric

\iff (1) F equicontinuous $\forall E \subset \Omega$ compact

Supposing $f \in F$ continuous (Arzelà-Ascoli)

(2) For any $z \in \Omega$, $\{ f(z) \}_{f \in F}$ is contained in compact subset of \mathbb{C}.

\iff F is uniformly bounded on every compact set $E \subset \Omega$.

\Rightarrow $|f(z)| \leq M_z \quad \forall z \in E \quad \forall f \in F$

(\Rightarrow) (2) implies $|f(z)| \leq M_z \quad \forall z \in E$ for fixed $f \in F$. We write M_z to emphasize that bound may depend on z.

But then (1) - equicontinuity - implies F is c.i. (2 - fixed)

$|z - z_0| < \delta \Rightarrow |f(z) - f(z_0)| < \epsilon \quad \forall f \in F$.

\Rightarrow $|f(z)| < M_{z_0} + \epsilon \quad \forall f \in F$.

Any compact E can be covered by finitely many such neighborhoods so $f \in F$ uniformly bounded.
E compact, so cover it with finitely many \(\frac{1}{2} \)-radius balls.

Pick \(\delta_k \) for each such ball. Choose \(i_0 \) s.t. if \(i,j > i_0 \), then

\[
d(f_{i_0} (\delta_k), f_{i_0} (\delta_k)) < \frac{\epsilon}{3} \quad \text{for all } \delta_k \text{ representatives from } \frac{1}{2} \text{-balls.}
\]

Then

\[
d(f_{i_0} (z), f_{i_0} (z)) < d(f_{i_0} (z), f_{i_0} (\delta_k)) + d(f_{i_0} (\delta_k), f_{i_0} (\delta_k)) < \frac{\epsilon}{3}
\]

if \(\delta_k \) chosen in \(\frac{1}{2} \)-ball of \(z \)

\[
< \epsilon.
\]

\[\] Finally, we arrive at a characterization of normality we can use:

Theorem: A family \(\mathcal{F} \) consisting of analytic functions is normal if and only if

\(\mathcal{F} \) is uniformly bounded on every compact set.

(\(\Leftarrow \)) uniformly bdd. on compact set immediately implies (2) in Arzela-Ascoli theorem.

Must show equicontinuity. Let \(C \): boundary of closed disk of radius \(r \) in \(\Omega \).

By Cauchy integral formula: For \(z \neq z_0 \) inside disk:

\[
\frac{1}{2\pi i} \int_C \left(\frac{f(\zeta)}{\zeta - z} - \frac{f(\zeta)}{\zeta - z_0} \right) d\zeta
\]

then

\[
\Rightarrow |f(z) - f(z_0)| \leq \frac{4M |z - z_0|}{2\pi r} \quad \text{if } |f| \leq M \text{ on } C
\]

and we restrict \(z, z_0 \) away from boundary \(C \) of disk say that they lie in disk with radius \(\frac{r}{2} \).

By our assumption, can choose \(M \) valid for all \(f \in \mathcal{F} \)

so get equicontinuity on any disk of radius \(\frac{r}{2} \) when disk of radius \(r \) in \(\Omega \).

Now use disks to cover a compact \(E \subset \Omega \). Get finite subcover, ...
The theory of normal families \(\Rightarrow \) \(\exists \) subsequence of \(g_n \), \(g_n \in F \) converging uniformly on compacts to \(f \).

Need to show \(f \in F \). It is clear

that several properties are preserved in limit: \(f \) analytic,

\[
|f(z)| \leq 1 \text{ in } \Omega, \quad f(z_0) = 1 \quad (\text{closed conditions}). \quad \text{Moreover,}
\]

\[
f'(z_0) = B \quad \text{by construction, where } B \text{ denoted } \lim_{n \to \infty} g_n'(z_0).
\]

Remains to check: \(f \) is one-one to show \(f \in F \).

Pick \(z_1 \in \Omega \). Then \(\hat{g}(z) = g(z) - g(z_1) \) for each \(g \in F \) yields

family that is \(\neq 0 \) for all \(z \in \Omega \setminus \{z_1\} \) since \(g \)'s were one-one.

Now \(\hat{g}_n \to f(z) - f(z_1) \).

Hence, \(\hat{g}_n \) converges to \(f(z) - f(z_1) \) and \(\hat{g}_n \neq 0 \) in region \(\Omega \setminus \{z_1\} \).

Then either \(f(z) - f(z_1) \equiv 0 \ \forall \ z \in \Omega \setminus \{z_1\} \) or \(f(z) - f(z_1) \neq 0 \ \forall \ z \in \Omega \setminus \{z_1\} \).

Now \(f(z) \equiv f(z_1) \), i.e. \(f \) constant, is not possible since, for example,

\[
f'(z_0) = B > 0 \quad \text{a positive real number}.
\]

So must be that \(f(z) \neq f(z_1) \ \forall \ z \in \Omega \setminus \{z_1\} \). Since \(z_1 \) was

arbitrary, this proves \(f \) is one-one.

\(*\) (Hurwitz thm is combination of Cauchy integral formula + isolated zeros. See p.178 of Ahlfors.)
Lastly, we must show this \(f \) with maximal derivative at \(z_0 \) is onto the open ball \(B_{1} \) \(\forall w: |w| < 1 \).

Suppose that \(f(z_0) \notin B_{1} \) with \(f(z_0) = w_0 \). Construct \(G \in F \) with \(G'(z_0) > B \) (contradicting maximality of \(f'(z_0) \)).

Now \(w_0 \neq 0 \) by assumption that \(f(z_0) = 0 \). Map \(B_{1} \) to itself, taking distinguished point in \(z_2 \):
\[
W \rightarrow \frac{W - W_0}{1 - \overline{W_0}W}
\]

This is accomplished by the linear fractional transformation:
\[
\Psi(z) := \frac{f(z) - W_0}{1 - \overline{W_0}f(z)}.
\]

Then since \(f(z) \) omits \(W_0 \), \(\Psi \) is one-one, analytic function:
\[
\Omega \rightarrow \text{Ann}(0,1) = \{ z \mid 0 < |z| < 1 \}
\]

Can define \(\sqrt{\Psi(z)} \) since we can define \(\log(\Psi(z)) \) by path integration of \(\frac{\Psi'(z)}{\Psi(z)} \).

This is well-defined independent of path by Cauchy integral theorem, since \(\Omega \) simply-connected.

As we saw before, there are distinct branches \(h(z) \), \(-h(z)\), so:
\[
h(z)^2 = \Psi(z)
\]
with \(0 < |h(z)| < 1 \).

So \(\Psi(z) \) one-one \(\Rightarrow \) \(h(z) \) one-one.

We do one last linear transformation to normalize \(h(z) \), and make it \(-0 \) at \(z_0 \):
\[
G(z) := \frac{h(z) - h(z_0)}{1 - \overline{h(z_0)}h(z)} \left(\frac{1}{h'(z_0)} \right) \text{. Now } G \in F.
\]
Then we just calculate $G'(z_0)$ using many applications of the chain rule:

\[
G'(z_0) = \frac{|h'(z_0)|}{1 - |h(z_0)|^2} = \frac{1 + |w_0|}{2\sqrt{w_0}} B > B,
\]

our desired contradiction.

Short facts about boundaries:

Given two regions Ω_1, Ω_2, boundaries $\partial(\Omega_1)$

Suppose f maps Ω_1 conformally to $f(\Omega_1)$.

If $f(\Omega_1)$ has boundary $\partial(\Omega_2)$ and $\exists z_0 \in \Omega_1$

st. $f(z_0) \in \Omega_2$, then $f(\Omega_1) = \Omega_2$.

(so image of conformal map deleted by boundary + one pt.)

If: By definition, regions are open, connected $f(\Omega_1)$ open, say by inverse function

\[
\Rightarrow f(\Omega_1) \text{ either in } \Omega_2 \\
\text{or } \Omega_2 \setminus (\Omega_2 \cup \partial(\Omega_2))
\]

But since $f(z_0) \in \Omega_2$, must be open set in Ω_2.

Show $f(\Omega_1)$ closed relative to Ω_2, hence $= \Omega_2$:

clear since $\partial(f(\Omega_1)) = \partial(\Omega_2)$ disjoint from Ω_2

so $f(\Omega_1) \cap \Omega_2 = f(\Omega_1)$. √
The (Osgood-Carathéodory) theorem states that if Ω_1, Ω_2 are bounded, simply connected regions with $\partial(\Omega_i)$ simple, closed curves, then a conformal map $f: \Omega_1 \to \Omega_2$ can be extended to a continuous, bijective map:

$$\Omega_1 \cup \partial \Omega_1 \to \Omega_2 \cup \partial \Omega_2.$$