Math 8702 - Spring 2014 - Problem Set 1

1. (Ahlfors, 2.1.2, p. 28, \#3) Find the most general harmonic polynomial of the form

$$
a x^{3}+b x^{2} y+c x y^{2}+d y^{3} .
$$

Determine the harmonic conjugate. (See p. 27 of Ahlfors for an alternate method for determining the conjugate harmonic function in this case.)
2. (Ahlfors, 2.1.2, p. 28, \#6) Prove that a function $u(z)$ is harmonic if and only if $u(\bar{z})$ is harmonic.
3. Determine the subset of the plane on which the following functions are harmonic:
a) $u_{1}(x, y)=\operatorname{Im}(z+1 / z)$
b) $u_{2}(x, y)=\frac{y}{(x-1)^{2}+y^{2}}$
4. Let u be the harmonic function on the upper half plane $(y>0)$ defined by

$$
u(x, y)=1-y+\frac{x}{x^{2}+y^{2}}
$$

Find a corresponding harmonic function in the first quadrant under the map $z \mapsto z^{2}$.
5. Does there exist a bijective, conformal map between a simply connected region and one that is not simply connected?

