Submit solutions to three of the following problems.

1. Determine whether \(f = xy^3 - z^2 + y^5 - z^3 \) is in the ideal \(I = \langle -x^3 + y, x^2y - z \rangle \).

2. Assume that \(k \) is an algebraically closed field. Identify \(\mathbb{A}^9(k) \) with the space of \((3 \times 3)\)-matrices \(A = [a_{i,j}] \). Let \(\rho: \mathbb{A}^9(k) \to \mathbb{A}^9(k) \) be the rational map defined by
 \[
 A \mapsto A \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} A^{-1}.
 \]

 (a) Find equations for the smallest affine variety \(X \) containing the image of \(\rho \).
 (b) Show that \(X \) is the set of all nilpotent \((3 \times 3)\)-matrices.

3. Use the method of Lagrange multipliers to find the point(s) on the surface defined by \(x^4 + y^2 + z^2 - 1 = 0 \) that are closest to the point \((1,1,1)\) in \(\mathbb{R}^3 \).
 Hint: Proceed as in Example 3 in §2.8.

4. Suppose that \(k \) is a field and \(\varphi: k[x_1, \ldots, x_n] \to k[x_1] \) is a ring homomorphism that is the identity on \(k \) and maps \(x_1 \) to \(x_1 \). Given an ideal \(I \subseteq k[x_1, \ldots, x_n] \), prove that \(\varphi(I) \subseteq k[x_1] \) is an ideal.
 Hint: In the proof of Theorem 3.5.2, we use this result when \(\varphi \) is the map that evaluates \(x_i \) at \(a_i \) for \(2 \leq i \leq n \).

5. Consider the ideal \(I = \langle x^2y + xz + 1, xy - xz^2 + z - 1 \rangle \) discussed in §3.5.
 (a) Show that the partial solution \((b, c) = (0, 0)\) does not extend to a solution \((a, 0, 0) \in V(I)\).
 (b) In the text, it is shown that \(g_o = g_1 \) for the partial solution \((1, 1)\). Show that \(g_o = g_3 \) works for all partial solutions different from \((1, 1)\) and \((0, 0)\).