Reference Sheet

We are going to assume there is a given abstract set \(P \) of “pictures”.

Definition 1. Let \(f : \mathbb{N} \to \mathbb{N} \). Then we say \(F(x) \) is the ordinary generating function (ogf) for \(f \) if

\[
F(x) = \sum_{n \geq 0} f(n) x^n
\]

where the power series on the right hand side is understood to be a formal power series. That is, \(x \) is treated as an indeterminate variable. Similarly, we say \(G(x) \) is the exponential generating function (egf) for \(f \) if

\[
G(x) = \sum_{n \geq 0} \frac{f(n)}{n!} x^n
\]

where the power series is again understood to be formal.

Definition 2. A connected structure is a pair \(C = (S, p) \) consisting of a finite set \(S \) of positive integers (the “label” set) and a picture \(p \) using all labels from the labeling set. The weight of \(C \) is \(n = |S| \). A connected structure of weight \(n \) is called standard if its label set is \([n]\). For all practical purposes, our connected structures will always be standard and we view \(p \) as a permutation on \(n \) letters with a single cycle.

Definition 3. A weight class \(W \) is a set of standard connected structures whose weights are all the same and whose pictures are all different. The weight of \(W \) is the common weight of all the connected structures. For all practical purposes, \(W \) will be the set of connected structures of weight \(n \) whose pictures are all possible single cycle permutations on \(n \) letters.

Example 1. Let \(S = [3] \) and our structures be permutations. Then the connected structures on this labeling set are as follows:

\[
C_1 = ([3], (123)) \quad C_2 = ([3], (132))
\]

Notice how the set of connected structures is the set of elements of \(S_3 \) with a single cycle and \(W_3 = \{C_1, C_2\} \).

Definition 4. A disconnected structure \(D \) is a set of connected structures whose label sets form a partition of \([n]\), for some \(n \). The weight of \(D \) is the sum of the weights of the connected structures in \(D \). For all practical purposes, if the weight of \(D \) is \(n \), then we view \(D \) as any permutation on \(n \) letters.

Example 2. Consider the same setup as in Example 1. The disconnected structures on this set are as follows:

\[
D_1 = ([3], (123)) \quad D_2 = ([3], (132)) \quad D_3 = ([3], (1)(23)) \quad D_4 = ([3], (2)(13)) \quad D_5 = ([3], (3)(12)) \quad D_6 = ([3], (1)(2)(3))
\]

Notice \(D_1 = C_1, D_2 = C_2 \), and that the set \(\{D_i \mid 1 \leq i \leq 6\} \) is in bijective correspondence with \(S_3 \). This holds generally for when \(S = [n] \).
Definition 5. A family \mathcal{F} is a collection of weight classes W_1, W_2, \ldots where for each $n = 1, 2, \ldots$, the weight class W_n is of weight n. Write w_n for the number of connected structures in W_n, and we call $W(x)$, the egf of the sequence $\{w_n\}_{n \geq 0}$, the weight enumerator of the family. For all practical purposes, the weight classes of \mathcal{F} are those of permutations.

Theorem 1 (The Exponential Formula). Let \mathcal{F} be a family, $W(x)$ be the weight enumerator of \mathcal{F}, and $G(x)$ be the egf for the number of disconnected structures which can be built from \mathcal{F}. Then

$$G(x) = e^{W(x)}$$

Proof. For an induction based version of the proof, see Wilf’s Generatingfunctionology. \qed