16. \(\frac{1}{10} \frac{6}{9} + \frac{1}{10} \frac{5}{9} + \frac{1}{10} \frac{4}{9} + \frac{1}{10} \frac{3}{9} + \frac{1}{10} \frac{3}{9} + \frac{1}{10} \frac{4}{9} + \frac{1}{10} \frac{5}{9} + \frac{1}{10} \frac{6}{9} = \frac{7}{15} \)

(see picture below)
17. Suppose we put \(n \) balls into one of the urns for some fixed \(n \). We can assume without loss of generality that \(0 \leq n \leq 5 \). Suppose we put \(W \) of the white balls into that urn. Then the probability of drawing a white ball is
\[
\frac{1}{2} \left(\frac{W}{n} \right) + \frac{1}{2} \left(\frac{5-W}{10-n} \right) = \frac{(10-2n)W+5n}{2n(10-n)}.
\]
Since \(10-2n \) is always nonnegative, this function is increasing in \(W \). The largest \(W \) can be is \(n \), so the probability is largest when \(W = n \), that is, when all \(n \) of the balls we put into the urn are white.

If we put \(n \) white balls into one of the urns and all the rest of the balls into the other urn, then our probability of choosing a white ball is \(\frac{1}{2} \) if \(n = 0 \) and \(\frac{1}{2} + \frac{1}{2} \left(\frac{5-n}{10-n} \right) \) if \(0 < n \leq 5 \). The second probability is always at least as large as the first, so we can rule out \(n = 0 \). This probability is largest when \(n = 1 \).

So, our probability of drawing a white ball is maximized when we place 1 white ball in one urn and all the other balls in the second urn.

24.
\[
P(\text{late}) = P(\text{subway})P(\text{late} \mid \text{subway}) + P(\text{bus})P(\text{late} \mid \text{bus})
= 0.7(0.2) + 0.3(0.4)
= 0.26
\]

32. Let \(p_1 \) be the probability that the first boy gets the first basket, \(p_2 \) be the probability that the second boy gets the first basket, and \(p_3 \) be the probability that the third boy gets the first basket.

\[
p_1 = 0.2 + (0.8)(0.7)(0.5)p_1
\]
\[
p_1 = 0.2778
\]
\[
p_2 = (0.8)(0.3) + (0.8)(0.7)(0.5)p_2
\]
\[
p_2 = 0.3333
\]
\[
p_3 = 1 - p_1 - p_2
\]
\[
p_3 = 0.3889
\]

39. Let \(C_B \) be the event the cab was blue, \(C_G \) be the event the cab was green, and \(W_B \) be the event the witness said the cab was blue.
\[P(C_B \mid W_B) = \frac{P(C_B \cap W_B)}{P(W_B)} = \frac{P(C_B)P(W_B \mid C_B)}{P(W_B \mid C_B) + P(C_G)P(W_B \mid C_G)} = \frac{(0.15)(0.8)}{(0.15)(0.8) + (0.85)(0.2)} = \frac{0.12}{0.12 + 0.17} = 0.41 \]

40. Let \(S = \) be the event the day was snowy, \(NS \) be the event the day was not snowy, and \(C \) be the event the student was in class.

\[P(S \mid C) = \frac{P(S \cap C)}{P(C)} = \frac{P(S)P(C \mid S)}{P(S)P(C \mid S) + P(NS)P(C \mid NS)} = \frac{(0.2)(0.4)}{(0.2)(0.4) + (0.8)(0.7)} = \frac{0.08}{0.08 + 0.56} = 0.125 \]

55. Let \(C \) be the event she is a Conservative, \(I \) be the event she is an Independent, \(L \) be the event she is a Liberal, and \(V \) be the event she is a voter.

\[P(L \mid V) = \frac{P(L \cap V)}{P(V)} = \frac{P(L)P(V \mid L)}{P(L)P(V \mid L) + P(I)P(V \mid I) + P(C)P(V \mid C)} = \frac{(0.5)(0.8)}{(0.5)(0.8) + (0.2)(0.5) + (0.3)(2/3)} = \frac{0.4}{0.4 + 0.1 + 0.2} = 0.5714 \]
61. We begin by drawing the upper-left part of the table.

<table>
<thead>
<tr>
<th>$N_1 \setminus N_6$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>$(\frac{1}{6})^2$</td>
<td>$(\frac{1}{6})(\frac{5}{6})(\frac{1}{6})$</td>
<td>$(\frac{1}{6})(\frac{5}{6})^2(\frac{1}{6})$</td>
</tr>
<tr>
<td>2</td>
<td>$(\frac{1}{6})^2$</td>
<td>0</td>
<td>$(\frac{1}{6})(\frac{5}{6})^2$</td>
<td>$(\frac{1}{6})(\frac{5}{6})^2(\frac{1}{6})$</td>
</tr>
<tr>
<td>3</td>
<td>$(\frac{1}{6})(\frac{5}{6})(\frac{1}{6})$</td>
<td>$(\frac{1}{6})(\frac{5}{6})^2$</td>
<td>0</td>
<td>$(\frac{1}{6})^2(\frac{1}{6})^2$</td>
</tr>
<tr>
<td>4</td>
<td>$(\frac{1}{6})(\frac{5}{6})^2(\frac{1}{6})$</td>
<td>$(\frac{1}{6})(\frac{5}{6})^2(\frac{1}{6})$</td>
<td>0</td>
<td>$(\frac{1}{6})^3(\frac{1}{6})^2$</td>
</tr>
<tr>
<td>5</td>
<td>$(\frac{1}{6})^2(\frac{1}{6})$</td>
<td>$(\frac{1}{6})(\frac{5}{6})^3(\frac{1}{6})$</td>
<td>$(\frac{1}{6})(\frac{5}{6})^2(\frac{1}{6})$</td>
<td>$(\frac{1}{6})^3(\frac{1}{6})^2$</td>
</tr>
<tr>
<td>6</td>
<td>$(\frac{1}{6})(\frac{5}{6})^3(\frac{1}{6})$</td>
<td>$(\frac{1}{6})(\frac{5}{6})^3(\frac{1}{6})$</td>
<td>$(\frac{1}{6})(\frac{5}{6})^2(\frac{1}{6})$</td>
<td>$(\frac{1}{6})^3(\frac{1}{6})(\frac{1}{6})$</td>
</tr>
</tbody>
</table>

We see a pattern emerging, so we can write our distribution:

$$P(N_1 = i, N_6 = j) = \begin{cases} 0 & 1 \leq i = j, \\ (\frac{1}{6})^{i-j}(\frac{5}{6})^{j-i-1}(\frac{1}{6})^2 & 1 \leq i < j, \\ (\frac{1}{6})^{j-i}(\frac{5}{6})^{i-j-1}(\frac{1}{6})^2 & 1 \leq j < i. \end{cases}$$

64.

$$P(Y = 2 \mid X = 0) = 1/4$$

$$P(Y = 2, X = 0)$$

$$P(Y = 2, X = 0) = 1/4$$

$$P(Y = 2, X = 0) + P(Y = 1, X = 0)$$

$$0.1$$

$$P(Y = 1, X = 0) = 0.3$$

Since X and Y are independent, we know $P(Y = 2, X = 0) = P(Y = 2)P(X = 0)$. So, $0.1 = (0.1 + 0.3)P(Y = 2)$, which means $P(Y = 2) = 0.25$. This forces $P(Y = 2, X = 6)$ to be $0.25 - 0.1 - 0.05 = 0.1$.

Again by independence, $P(Y = 2, X = 3) = P(Y = 2)P(X = 3)$. So, $0.05 = 0.25P(X = 3)$, which means $P(X = 3) = 0.2$. This forces $P(Y = 1, X = 3)$ to be $0.2 - 0.05 - 0.15$.

Since $P(Y = 1) + P(Y = 2) = 1$, we have $P(Y = 1) = 1 - 0.25 = 0.75$. From the rest of the table, $P(Y = 1, X = 6) = 0.75 - 0.3 - 0.15 = 0.3$.

<table>
<thead>
<tr>
<th>$Y \setminus X$</th>
<th>0</th>
<th>3</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.15</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.05</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Additional problem. (a) \[
\begin{array}{c|cccc}
X \setminus Y & 0 & 1 & 2 & 3 \\
\hline
1 & \frac{6(3)}{6(3)} & \frac{(1)(6)}{6(3)} & 0 & 0 \\
2 & \frac{6(3)}{6(3)} & \frac{(1)(6)}{6(3)} & \frac{(2)(6)}{6(3)} & 0 \\
3 & \frac{6(3)}{6(3)} & \frac{(1)(6)}{6(3)} & \frac{(2)(6)}{6(3)} & \frac{(3)(6)}{6(3)} \\
4 & 0 & \frac{(1)(6)}{6(3)} & \frac{(2)(6)}{6(3)} & \frac{(3)(6)}{6(3)} \\
5 & 0 & 0 & \frac{(1)(6)}{6(3)} & \frac{(2)(6)}{6(3)} \\
6 & 0 & 0 & 0 & \frac{(1)(6)}{6(3)} \\
\end{array}
\]

(b) \[P(X = i) = \frac{1}{6} \text{ for } 1 \leq i \leq 6.\]
\[P(Y = 0) = \frac{1}{8},\]
\[P(Y = 1) = \frac{7}{24},\]
\[P(Y = 2) = \frac{7}{24},\]
\[P(Y = 3) = \frac{7}{24} \]

(c) \[
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
P(X = x \mid Y = 2) & 0 & \frac{4}{35} & \frac{9}{35} & \frac{12}{35} & \frac{7}{35} & 0 \\
\end{array}
\]

(d) \[E(X = x \mid Y = 2) = 1(0) + 2\left(\frac{4}{35}\right) + 3\left(\frac{9}{35}\right) + 4\left(\frac{12}{35}\right) + 5\left(\frac{7}{35}\right) + 6(0) = \frac{19}{5} \]