1. Show that all groups of order 35 are cyclic.

The factors of 35 are 1, 5, 7, and 35.

By Sylow’s p-subgroup Theorem, there exists a subgroup of order 5, and the number of subgroups of order 5 divides 35 and is 1 mod 5.

$5, 7, 35 \neq 1 \mod 5$, so there is a unique subgroup of order 5.

Call this group P.

Since P is the only subgroup of this order, it must be normal.

By Sylow’s p-subgroup Theorem, there exists a subgroup of order 75, and the number of subgroups of order 7 divides 35 and is 1 mod 7.

$5, 7, 35 \neq 1 \mod 7$, so there is a unique subgroup of order 7.

Call this group Q.

Since Q is the only subgroup of this order, it must be normal.

By Lagrange, P, Q are cyclic.

Let a be a generator of P, b a generator of Q.

Note that $aba^{-1}b^{-1} \in P \cap Q$ because P, Q are normal.

Then $aba^{-1}b^{-1} = e$.

$ab = ba$.

$ab \in P \times Q \subseteq G$.

$(ab)^1 = ab \neq e$.

$(ab)^5 = a^5b^5 = b^5 \neq e$.

$(ab)^7 = a^7b^7 = a^2 \neq e$.

So, ab has order 35.

$G = \langle ab \rangle$ and is cyclic.
2. Let G be a finite group and H a subgroup of index 2. Show H is normal.

Choose $g \in G$.

If $g \in H$, then so is g^{-1} and $gHg^{-1} = H$.

If $g \notin H$, then $gH \neq H$.

$g \in gH$.

So, $e \in gHg^{-1}$.

Since H has index 2, either $gHg^{-1} = H$ or $gHg^{-1} = G \setminus H$.

$e \in gHg^{-1}$ and $e \notin G \setminus H$.

So, $gHg^{-1} = H$ and H is normal.

3. Let S, T be diagonalizable linear operators on a finite-dimensional \mathbb{C}-vectorspace V with $ST = TS$. Show that V has a basis of simultaneous eigenvectors for S, T.

T is diagonalizable, so $V = \sum_{\lambda \text{ an eigenvalue of } T} V_{\lambda}$ where V_{λ} is the λ eigenspace of T on V.

Let $v \in V_{\lambda}$.

\[
TSv = STv \\
= S(\lambda v) \\
= \lambda Sv
\]

So, $S(V_{\lambda}) \subseteq V_{\lambda}$.

Let $f(x)$ be the minimal polynomial of S on $V, f_{\lambda}(x)$ be the minimal polynomial of S of V_{λ}.

Since $f(S)$ vanishes on V, it also vanishes on V_{λ}.

This means $f_{\lambda}(x)$ divides $f(x)$.

Since S is diagonalizable, $f(x)$ factors into linear factors.

This means $f_{\lambda}(x)$ must also factor into linear factors.

So, S is diagonalizable on V_{λ}.

Each eigenvector for S on V_{λ} is also an eigenvector for T.

Each V_{λ} has a basis of simultaneous eigenvectors for S and T.

So V has a basis of simultaneous eigenvectors for S and T.
4. Prove that \(x^5 + y^7 + z^{11} \) is irreducible in \(\mathbb{C}[x, y, z] \).

Notice that \(\mathbb{C}[x, y, z] \subset \mathbb{C}(x)[y, z] \), so if \(x^5 + y^7 + z^{11} \) is irreducible in the larger ring, then it is also irreducible in the smaller one.

First look at \(x^5 + y^7 \in \mathbb{C}(x)[y] \).
\(\mathbb{C}(x)[y] \) is a UFD, so \(\exists p(y) \) an irreducible nonunit in \(\mathbb{C}(x)[y] \) dividing \(x^5 + y^7 \).

If \(p^2(y) \) divides \(x^5 + y^7 \), then \(p(y) \) divides \(7y^6 \).

Suppose this is the case.
Then \(x^5 + y^7 = \frac{p}{7}(7y^6) + x^5 \) means \(p(y) \) divides \(x^5 \).
But this would imply \(p(y) \) was a unit which is a contradiction.

\(p(y) \) does not divide \(x^5 + y^7 \), so \(p^2(y) \) does not divide \(x^5 + y^7 \).

\(p(y) \) divides \(x^5 + y^7 + x^{11} \) is irreducible in \(\mathbb{C}[x, y, z] \).

5. Describe all intermediate fields between \(\mathbb{Q} \) and \(\mathbb{Q}(\xi_{12}) \) where \(\xi_{12} \) is a primitive twelfth root of unity.

The conjugates to \(\xi_{12} \) are \(\xi_{12}^5, \xi_{12}^7, \) and \(\xi_{12}^1 \).

Let \(\alpha \) be the automorphism where \(\alpha(\xi_{12}) = \xi_{12}^5 \), \(\beta \) be the automorphism where \(\beta(\xi_{12}) = \xi_{12}^7 \), and \(\gamma \) be the automorphism where \(\gamma(\xi_{12}) = \xi_{12}^{11} \).

If \(\alpha(\xi_{12}) = \xi_{12}^5 = \xi_{12}^n \), then \(5n \equiv 0 \text{ mod } 12 \).

So, \(n \equiv 0, 3, 6, 9 \) mod 12.

\(\alpha \) fixes \(\mathbb{Q}(\xi_{12}^3) = \mathbb{Q}(i) \), so \(\mathbb{Q}(i) \) is an intermediate field between \(\mathbb{Q} \) and \(\mathbb{Q}(\xi_{12}) \).

If \(\beta(\xi_{12}) = \xi_{12}^7 = \xi_{12}^n \), then \(7n \equiv 0 \text{ mod } 12 \).

So, \(n \equiv 0, 2, 4, 6, 8, 10 \) mod 12.

\(\beta \) fixes \(\mathbb{Q}(\xi_{12}^2) = \mathbb{Q}(\xi_6) \).

\(xi_6 = e^{2\pi i/6} = \frac{1}{2} + i\frac{\sqrt{3}}{2} \)

So \(\mathbb{Q}(\sqrt{-3}) \) is an intermediate field between \(\mathbb{Q} \) and \(\mathbb{Q}(\xi_{12}) \).

\(\gamma \) fixes \(\xi_{12} + \xi_{12}^{-1} \)
\(\xi_{12} + \xi_{12}^{-1} = e^{2\pi i/12} + e^{-2\pi i/12} = 2\cos \pi/6 = \sqrt{3} \).

So \(\mathbb{Q}(\sqrt{3}) \) is an intermediate field between \(\mathbb{Q} \) and \(\mathbb{Q}(\xi_{12}) \).

6. Prove that \(x^4 + 1 \) is reducible in the polynomial ring \(\mathbb{F}_p[x] \) over the finite field \(\mathbb{F}_p \) with \(p \) elements, for every prime \(p \).

If \(p = 2 \), \(x^4 + 1 = (x + 1)^4 \), so it is reducible.
Any element of order 8 is a root of $x^4 + 1$.

Suppose $p \equiv 1 \mod 4$.

Then $p = 4m + 1$.

$p^2 - 1 = (4m + 1)(4m + 1) - 1 = 16m^2 + 8m^2$, which is divisible by 8.

Suppose $p \equiv 3 \mod 4$.

Then $p = 4m + 3$.

$p^2 - 1 = (4m + 3)(4m + 3) - 1 = 16m^2 + 24m^2 + 8$, which is divisible by 8.

$\mathbb{F}_{p^2}^\times$ has order $p^2 - 1$, so by Lagrange’s Theorem, \exists an element of order 8.

Let α be an element of order 8 in $\mathbb{F}_{p^2}^\times$.

Let P be the minimal polynomial of α in $\mathbb{F}_p[x]$.

Since $\mathbb{F}_p[x]$ is Euclidean, $x^4 + 1 = PQ + R$ where $Q, R \in \mathbb{F}_p[x]$, $\deg(R) < \deg(P)$.

Then $0 = R(\alpha)$.

By minimality of P, R is identically 0.

So P divides $x^4 + 1$.

$x^4 + 1$ is reducible in $\mathbb{F}_p[x]$.

7. Grant that the right $\mathbb{Z}[i]$ of Gaussian integers is Euclidean, this is a principal ideal domain. Observe that $(2 + i)(2 - i) = 5$. How many isomorphism classes of $\mathbb{Z}[i]$ modules with exactly 5 elements are there?

By the Structure Theorem, all finite $\mathbb{Z}[i]$ modules are $\mathbb{Z}[i]/I_1 \times \ldots \times \mathbb{Z}[i]/I_n$ where I_1, \ldots, I_n are ideals.

Since 5 is prime and $\mathbb{Z}[i]$ is a PID, all $\mathbb{Z}[i]$ modules of order 5 are $\mathbb{Z}[i]/I$ where $I = \langle a + bi \rangle$ and $a^2 + b^2 = 5$.

Then $a + bi$ could be any of $1 + 2i, 1 - 2i, -1 + 2i, -1 - 2i, 2 + i, 2 - i, -2 + i, -2 - i$.

However, $-1(2 + i) = -2 - i, i(2 + i) = -1 + 2i$, and $-i(2 + i) = 1 - 2i$, so the ideals generated by $2 + i, -2 - i, -1 + 2i$, and $1 - 2i$ are the same.

Similarly, the ideals generated by $1 + 2i, -1 - 2i, 2 - i$, and $-2 + i$ are the same.

Let $M = \mathbb{Z}[i]/(2 + i), N = (2 - i)$.

Let $\varphi : M \to N$ be a module homomorphism.

Note that $2 - i \not\in (2 + i)$.

$\varphi(2 - i) = (2 - i)\varphi(1) = 0$.

So a nonzero element in M maps to 0 in N.

φ is not an isomorphism.

So, there are 2 isomorphism classes of $\mathbb{Z}[i]$ modules with 5 elements.