1. Prove that there is no one-to-one conformal map of the punctured disc \(\{ z \in \mathbb{C} \mid 0 < |z| < 1 \} \) onto the annulus \(\{ z \in \mathbb{C} \mid 1 < |z| < 2 \} \).

Suppose there exists such a map, \(f \).

Then \(f \) is bounded in the punctured disk, so \(\lim_{z \to 0} zf(z) = 0 \).

So, 0 is a removable singularity of \(f \).

Consider then \(g \), which is holomorphic on the unit disc and agrees with \(f \) on the punctured disc.

First suppose \(g(0) = w \) in the annulus \(\{ z \in \mathbb{C} \mid 1 < |z| < 2 \} \).

\(\exists z \neq 0 \) in the punctured disc where \(g(z) = w \), because \(f \) is onto.

Let \(A_1 \) be a neighborhood of 0, \(A_2 \) be a neighborhood of \(z \) where \(A_1 \cap A_2 = \emptyset \).

Then \(g(A_1), g(A_2) \) are open by the Open Mapping Theorem.

\(w \in g(A_1) \cap g(A_2) \), so \(g(A_1) \cap g(A_2) \) is a nonempty open set.

\(\exists w' \neq w \in g(A_1) \cap g(A_2) \).

This means \(\exists a, b \) in the punctured disc where \(f(a) = f(b) = w' \).

This is a contradiction, because \(f \) is one-to-one.

Then \(g(0) \) must be on the border of the annulus \(\{ z \in \mathbb{C} \mid 1 < |z| < 2 \} \).

This is impossible, because, by the Open Mapping Theorem, the image of the unit disc under \(g \) must be open or only a point.

So, no such \(f \) exists.

2. (a) State Schwarz’s Lemma.

Let \(D \) be the open unit disk. If \(f : D \to D \) is an analytic function fixing 0, then

(i) \(\forall z \in D, |f(z)| \leq |z| \) and \(|f'(0)| \leq 1 \).

(ii) Further, if \(|f'(0)| = 1 \) or \(|f(z)| = |z| \) for any \(z \in D \setminus \{0\} \), then \(f(z) = \alpha z \) for some \(\alpha \) with \(|\alpha| = 1 \).
(b) Let \(f : D \rightarrow D \) be a holomorphic map of the unit disc into itself. Prove that for all \(z \in D \),

\[
\left| f'(z) \right| \leq \frac{1}{1 - |f(z)|^2}.
\]

Note that the Möbius transformation \(\frac{z_0 - z}{1 - z_0z} \) maps \(D \) to \(D \) and interchanges \(z_0 \) and 0.

Fix \(z_0 \in D \).

Define \(g(z) = \frac{z_0 - z}{1 - z_0z}, h(z) = \frac{f(z_0) - z}{1 - f(z_0)z} \).

Then \(h \circ f \circ g^{-1} \) is holomorphic from \(D \) to itself and fixes 0.

\[
\left| \frac{f(z_0) - f(g^{-1}(z))}{1 - f(z_0)f(g^{-1}(z))} \right| \leq |z| \quad \text{by Schwarz's Lemma}
\]

\[
\left| \frac{f(z_0) - f(w)}{1 - f(z_0)f(w)} \right| \leq \frac{|z_0 - w|}{1 - \overline{z_0w}} \quad \text{letting } w = g^{-1}(z)
\]

\[
\left| \frac{f(z_0) - f(w)}{(z_0 - w)(1 - f(z_0)f(w))} \right| \leq \frac{1}{1 - \overline{z_0w}}
\]

\[
\left| \frac{f'(z_0)}{1 - |f(z_0)|^2} \right| \leq \frac{1}{1 - |z_0|^2} \quad \text{letting } w \rightarrow z_0
\]

Since \(z_0 \) was arbitrary, \(\left| f'(z) \right| \leq \frac{1}{1 - |z|^2} \quad \forall z \in D \) (note we can drop some of the absolute values because \(|z|, |f(z)| < 1 \)).

3. Prove that for any \(a \in \mathbb{C} \) and \(n \geq 2 \), the polynomial \(az^n + z + 1 \) has at least one root in the disc \(|z| \leq 2 \).

Rewrite \(az^n + z + 1 \) as \(a(z - \omega_1)...(z - \omega_n) \).

Then \(|a||\omega_1|...|\omega_n| = 1 \).

\[
|a| = \frac{1}{|\omega_1|...|\omega_n|}.
\]

If \(|a| \geq \frac{1}{2^{|n|}} \), then at least one of the \(\omega_k \)'s must be in the disc \(|z| \leq 2 \).

If \(|a| < \frac{1}{2^{|n|}} \), we will apply Rouché's Theorem.

Let \(f(z) = az^n + z + 1, g(z) = z + 1 \).

On the boundary of the disc \(|z| < 2 \), we get the following inequality:
\[|f(z) - g(z)| = |az^n + z + 1 - z - 1| \\
= |az^n| \\
= |a|2^n \\
< 1 \\
\leq |z + 1| \\
= |g(z)| \\
\leq |f(z)| + |g(z)|

So, \(f \) and \(g \) have the same number of zeros in the disc \(|z| < 2 \).

\(g \) has 1 zero in this disc, so \(f \) does as well.
Thus, in either case, \(az^n + z + 1 \) has at least one zero in the disc \(|z| < 2 \).

4. Evaluate the integral \(\int_{0}^{\infty} \frac{x^2}{1 + x^6} dx \). Carefully justify all your steps.

Let \(\gamma_R \) be the curve that goes from \(-R\) to \(R\) along the real axis and then back to \(-R\) along the upper semicircle.

\[
\int_{\gamma_R} \frac{x^2}{1 + x^6} dx = 2\pi i \left(\text{Res}_{x=e^{\pi i/6}} \frac{x^2}{1 + x^6} + \text{Res}_{x=i} \frac{x^2}{1 + x^6} + \text{Res}_{x=e^{5\pi i/6}} \frac{x^2}{1 + x^6} \right)
\]
\[
= 2\pi i \left(\frac{e^{2\pi i/6}}{6e^{5\pi i/6}} + \frac{e^{6\pi i/6}}{6e^{15\pi i/6}} + \frac{e^{10\pi i/6}}{6e^{25\pi i/6}} \right)
\]
\[
= \pi i \left(\frac{e^{2\pi i/6}e^{15\pi i/6} + e^{6\pi i/6}e^{5\pi i/6} + e^{10\pi i/6}e^{5\pi i/6}e^{15\pi i/6}}{e^{5\pi i/6}e^{15\pi i/6}e^{25\pi i/6}} \right)
\]
\[
= \frac{\pi i}{3} \left(-1 + 1 - 1 \right)
\]
\[
= \frac{\pi}{3}
\]
\begin{align*}
\left| \int_{C_R} \frac{x^2}{1 + x^6} \, dx \right| &\leq \int_{C_R} \left| \frac{x^2}{1 + x^6} \right| \, dx \\
&\leq \int_{C_R} \frac{R^2}{|R^6 - 1|} \, dx \\
&= \frac{2\pi R^3}{R^6 - 1} \, dx \\
&\to 0 \text{ as } R \to \infty
\end{align*}

\begin{align*}
\frac{1}{2} \lim_{R \to \infty} \int_{\gamma_R} \frac{x^2}{1 + x^6} \, dx &= \frac{1}{2} \lim_{R \to \infty} \left(\int_{-R}^{R} \frac{x^2}{1 + x^6} \, dx + \int_{C_R} \frac{x^2}{1 + x^6} \, dx \right) \\
\frac{1}{2} \lim_{R \to \infty} \left(\frac{\pi}{3} \right) &= \frac{1}{2} \left(\lim_{R \to \infty} \int_{-R}^{R} \frac{x^2}{1 + x^6} \, dx + \lim_{R \to \infty} \int_{C_R} \frac{x^2}{1 + x^6} \, dx \right) \\
\frac{1}{2} \left(\frac{\pi}{3} \right) &= \frac{1}{2} \int_{-\infty}^{\infty} \frac{x^2}{1 + x^6} \, dx \\
\frac{\pi}{6} &= \int_{0}^{\infty} \frac{x^2}{1 + x^6} \, dx \text{ as } \frac{x^2}{1 + x^6} \text{ is even}
\end{align*}

5. (a) State Cauchy-Goursat’s Theorem.

If \(f \) is analytic on an open set \(D \) and \(C \) is a closed, simple curve inside \(D \), then

\[\int_{C} f = 0. \]

(b) Use Cauchy-Goursat’s Theorem to prove that if the function \(f \) is continuous on \(\mathbb{C} \) and analytic on every point not on the real axis, then \(f \) is analytic everywhere.

Let \(C \) be any closed, simple curve in \(\mathbb{C} \).

If \(C \) is entirely in the upper or lower half-plane, then, by Cauchy-Goursat’s Theorem,

\[\int_{C} f = 0. \]

If \(C \) crosses the real axis, we evaluate the integral by cutting \(C \) along the real axis, and adding segments \(\varepsilon \) away from the real axis in both the upper and lower half-planes.

The integrals of each of these pieces are 0 because each piece is only in one half-plane. Adding up the integrals and letting \(\varepsilon \to 0 \), the parts along the real line cancel out, and we find that \(\int_{C} f = 0. \)

Since this is true for any closed, simple \(C \), by Morera’s Theorem, \(f \) is analytic on \(\mathbb{C} \).
6. Prove that if the composition of \(f \circ g \) of two entire functions \(f \) and \(g \) is a polynomial, then both \(f \) and \(g \) are polynomials.

This statement is only true if constants are not polynomials (otherwise, for example, \(f(z) = e^z \), \(g(z) = 1 \) would be a contradiction).

Let \(m \) be the order of \(f \circ g \).

Assume at least one of \(f, g \) is not a polynomial.

Since they are entire, \(f = \sum_{k=0}^{\infty} a_k z^k \), \(g = \sum_{k=0}^{\infty} b_k z^k \).

\[
f \circ g = f \left(\sum_{k=0}^{\infty} b_k z^k \right) = \sum_{k=0}^{\infty} a_k \left(\sum_{k=0}^{\infty} b_k z^k \right)^k
\]

Either \(f \) or \(g \) has a nonzero \(z^n \) term, where \(n > m \), and the other has a nonzero \(z^{\ell} \) term where \(\ell > 0 \).

Then \(f \circ g \) has a nonzero \(z^{n\ell} \) term, but \(n\ell > m \) and this is a contradiction.

7. Suppose \(f(z) \) is analytic on the unit disc \(D(0, 1) \) and continuous on the closed unit disc \(\overline{D}(0, 1) \). Assume that \(f(z) = 0 \) on an arc of the circle \(z = 1 \). Show that \(f(z) \equiv 0 \).

Let \(h(z) = \frac{z-i}{z+i} \), which bijectively and analytically maps the upper half plane, \(\mathbb{H} \), to the unit disc \(D \).

Let \(g = f \circ h \).

\(g \) is an analytic map from \(\mathbb{H} \) to \(D \) that is continuous on \(\mathbb{H} \cup \mathbb{R} \) and sends some interval of \(\mathbb{R} \) to 0.

Let \(U \) be an open set of \(\mathbb{H} \) where \(U \) intersects \(\mathbb{R} \) on some interval \(I \).

Let \(U' \) be the reflection of \(U \) across the real axis.

Then \(\exists G \) from \(U \cup I \cup U' \) to \(\mathbb{C} \) analytic where \(G|_U = g \).

By the identity principle, \(G \equiv 0 \), so \(g \equiv 0 \) on \(U \).

By the identity principle again, \(g \equiv 0 \).

Since \(h \) is invertible, \(g \circ h^{-1} = f \equiv 0 \).

8. Show that every elliptic function \(f \) of order \(m \) has \(m \) zeros in its fundamental parallelogram.

Since \(f \) is elliptic, so is \(f'/f \), with the same fundamental parallelogram.

Let \(\gamma \) be the path around the fundamental parallelogram, \(Z(f, \gamma) \) be the number of zeros of \(f \) inside \(\gamma \), and \(P(f, \gamma) \) be the number of poles of \(f \) inside \(\gamma \) (both including multiplicity).
\[Z(f, \gamma) - P(f, \gamma) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f} \]

\[Z(f, \gamma) - m = \frac{1}{2\pi i} \left(\int_{a}^{a+\omega_{1}} \frac{f'}{f} + \int_{a+\omega_{1}}^{a+\omega_{1}+\omega_{2}} \frac{f'}{f} + \int_{a+\omega_{1}+\omega_{2}}^{a+\omega_{2}} \frac{f'}{f} + \int_{a+\omega_{2}}^{a} \frac{f'}{f} \right) \]

\[Z(f, \gamma) = \frac{1}{2\pi i} \left(\int_{a}^{a+\omega_{1}} \frac{f'}{f} + \int_{a+\omega_{1}}^{a+\omega_{1}+\omega_{2}} \frac{f'}{f} - \int_{a+\omega_{1}+\omega_{2}}^{a+\omega_{2}+\omega_{1}} \frac{f'}{f} - \int_{a+\omega_{2}+\omega_{1}}^{a+\omega_{2}} \frac{f'}{f} \right) + m \]

So, \(f \) has \(m \) zeros in the fundamental parallelogram.