Plabic Networks on a Cylinder

Sunita Chepuri

Graduate Student Combinatorics Conference

April 7, 2018
Theory of plabic networks in a disk developed by Postnikov in studying connection between totally nonnegative Grassmannian and planar directed networks in a disk
Theory of plabic networks in a disk developed by Postnikov in studying connection between totally nonnegative Grassmannian and planar directed networks in a disk

Applications:
Theory of plabic networks in a disk developed by Postnikov in studying connection between totally nonnegative Grassmannian and planar directed networks in a disk

Applications:

- Soliton solutions to the KP equation
Motivation

Theory of plabic networks in a disk developed by Postnikov in studying connection between totally nonnegative Grassmannian and planar directed networks in a disk

Applications:

- Soliton solutions to the KP equation
- Scattering amplitudes for $\mathcal{N} = 4$ supersymmetric Yang-Mills
Theory of plabic networks in a disk developed by Postnikov in studying connection between totally nonnegative Grassmannian and planar directed networks in a disk

Applications:

- Soliton solutions to the KP equation
- Scattering amplitudes for $\mathcal{N} = 4$ supersymmetric Yang-Mills
- Poisson geometry
Postnikov Diagrams
A plabic graph on a cylinder is a planar undirected graph such that each boundary vertex has degree 1 and each internal vertex is colored black or white.

We can obtain a plabic graph from a Postnikov diagram as follows:

- Place a black vertex in every face oriented counterclockwise and a white vertex in every face oriented clockwise.
- If two oriented faces share a corner, connect the vertices in these two faces.
Postnikov Diagrams and Plabic Graphs

Sunita Chepuri (Graduate Student Combinatorics Conference)

Plabic Networks on a Cylinder

April 7, 2018 5 / 19
Perfect Orientation

Definition (Postnikov, 2006)

A perfect orientation of a plabic graph is an orientation of edges such that every black vertex has exactly one edge outgoing and every white vertex has exactly one incoming vertex.
A *perfect orientation* of a plabic graph is an orientation of edges such that every black vertex has exactly one edge outgoing and every white vertex has exactly one incoming vertex.
A trail in a perfectly oriented plabic graph on a cylinder G is a sequence of vertices $v_1, ..., v_{m+1}$ where v_1, v_{m+1} are boundary vertices on different boundary components and for each i, either (v_i, v_{i+1}) or (v_{i+1}, v_i) is an edge in G.
A trail in a perfectly oriented plabic graph on a cylinder G is a sequence of vertices v_1, \ldots, v_{m+1} where v_1, v_{m+1} are boundary vertices on different boundary components and for each i, either (v_i, v_{i+1}) or (v_{i+1}, v_i) is an edge in G.

oriented left to right
Definition

A directed plabic network on a cylinder is a perfectly oriented plabic graph on a cylinder with a weight $y_f \in \mathbb{R}_{>0}$ associated to each face such that $\prod y_f = 1$ and a specified trail with weight t.
A directed plabic network on a cylinder is a perfectly oriented plabic graph on a cylinder with a weight $y_f \in \mathbb{R}_{>0}$ associated to each face such that $\prod y_f = 1$ and a specified trail with weight t.
Path Weights

We can define the weight $wt(P, y, t)$ of any path P is a directed plabic network.
Path Weights

We can define the weight $wt(P, y, t)$ of any path P is a directed plabic network.

\[\frac{1}{y_1 y_2 y_3 y_4 y_5 y_6 y_7 y_8} \]
Definition (Gekhtman-Shapiro-Vainshtein, 2012)

Label the boundary vertices of a directed plabic network b_1, \ldots, b_n. The boundary measurements for a planar network on a cylinder are

$$M_{ij} := \sum_{\text{paths } P \text{ from } b_i \text{ to } b_j} (-1)^{\text{wind}(C_P)-1} \zeta^{\text{int}(P)} \text{wt}(P, y, t).$$
The following local transformations are moves:

\[
\begin{align*}
&y_0 \leftrightarrow \frac{y_1}{1 + y_0^{-1}} \quad &y_4(1 + y_0) \quad &y_0^{-1} \quad &y_2(1 + y_0) \\
&y_4 \leftrightarrow y_1 \quad &y_0 \leftrightarrow y_2 \quad &y_3 \leftrightarrow y_5 \\
&y_1 \leftrightarrow y_2
\end{align*}
\]
Theorem (Postnikov, 2006)

Applying moves doesn’t change the boundary measurements.
A cylindric k-loop plabic graph is a plabic graph on a cylinder that arises from a Postnikov diagram where exactly k of the strands are loops around the cylinder with the same orientation.
Cylindric k-loop Plabic Graphs

Definition

A cylindric k-loop plabic graph is a plabic graph on a cylinder that arises from a Postnikov diagram where exactly k of the strands are loops around the cylinder with the same orientation.
Cylindric k-loop Plabic Graphs

Definition

For a cylindric k-loop plabic network, any vertices that are not on one of the strings of vertices defined by the k loops and lie between two of these strings are called *interior vertices.*
Cylindric k-loop Plabic Graphs

Definition
For a cylindric k-loop plabic network, any vertices that are not on one of the strings of vertices defined by the k loops and lie between two of these strings are called *interior vertices*.

Theorem (C. 2018)
Any cylindric k-loop plabic network can be transformed by moves to one that has no interior vertices.
We define a transformation on weights for cylindric k-loop plabic graphs.
We define a transformation on weights for cylindric k-loop plabic graphs. By the previous theorem, we can assume there are no interior vertices.
We define a transformation on weights for cylindric k-loop plabic graphs. By the previous theorem, we can assume there are no interior vertices. This transformation only affects the weights of the faces surrounding two adjacent strings of vertices, so we will ignore the rest of the graph.
We define a transformation on weights for cylindric k-loop plabic graphs. By the previous theorem, we can assume there are no interior vertices. This transformation only affects the weights of the faces surrounding two adjacent strings of vertices, so we will ignore the rest of the graph.
\[
\begin{align*}
 a' &= a_1 a_2 b_1 b_2 b_3 c_1 c_2 c_3 + 1 + c_1 + c_1 c_2 c_3 \\
 b' &= a_1 a_2 b_1 b_2 b_3 c_1 c_2 c_3 + 1 + c_1 + c_1 c_2 c_3
\end{align*}
\]
\[a'_1 = \frac{a_1 a_2 b_1 b_2 b_3 c_1 c_2 c_3 + 1 + c_1 + c_1 c_2}{a_2 b_1 b_2 b_3 (1 + c_1 + c_1 c_2 + c_1 c_2 c_3)} \]

\[b'_1 = \frac{b_1 (a_1 a_2 b_1 b_2 b_3 c_1 c_2 + a_1 a_2 b_1 b_2 b_3 c_1 c_2 c_3 + 1 + c_1)}{a_1 a_2 b_1 b_2 b_3 c_1 + a_1 a_2 b_1 b_2 b_3 c_1 c_2 + a_1 a_2 b_1 b_2 b_3 c_1 c_2 c_3 + 1} \]

\[c'_1 = \frac{a_1 a_2 b_1 b_2 b_3 c_1 (1 + c_1 + c_1 c_2 + c_1 c_2 c_3)}{a_1 a_2 b_1 b_2 b_3 c_1 c_2 + a_1 a_2 b_1 b_2 b_3 c_1 c_2 c_3 + 1 + c_1} \]
Theorem (C. 2018)

Plabic R-matrices have the following properties:

- They preserve the boundary measurements.
- They are involutions.
- They give the only choices of weights on a fixed cylindric 2-loop plabic graph that preserve the boundary measurements.
- They satisfy the braid relation.
Theorem (C. 2018)

Plabic R-matrices have the following properties:

- They preserve the boundary measurements.
Theorem (C. 2018)

Plabic R-matrices have the following properties:

- They preserve the boundary measurements.
- They are involutions.
Plabic R-Matrix

Theorem (C. 2018)

Plabic R-matrices have the following properties:
- They preserve the boundary measurements.
- They are involutions.
- They give the only choices of weights on a fixed cylindric 2-loop plabic graph that preserve the boundary measurements.
Theorem (C. 2018)

Plabic R-matrices have the following properties:

- They preserve the boundary measurements.
- They are involutions.
- They give the only choices of weights on a fixed cylindric 2-loop plabic graph that preserve the boundary measurements.
- They satisfy the braid relation.
A few other properties of note:
A few other properties of note:

- The plabic R-matrix has an underlying cluster structure.
Plabic R-Matrices

A few other properties of note:

- The plabic R-matrix has an underlying cluster structure.
- We can define our networks with edge weights instead of face and trail weights. This gives an edge weighted version of the plabic R-matrix. In certain cases, this specializes to the geometric R-matrix.