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0. Introduction

1. What is a matroid?

2. The Automorphism Group of a Matroid

3. Questions for the Audience

Goal Theorem for the Talk.

Theorem (Harary, Piff, Welsh). Let H be a group. Then there exists a graph whose
associated independence structure has automorphism group isomorphic to H.

Remark. For the purpose of this talk, I will specialize to the finite case in which an
independence structure is a matroid.

∗These notes were prepared for my talk at Craig Corsi’s seminar on Representation Theory. Many
thanks to Craig for reading an early draft of these notes and giving comments. If you notice any other
errors, let me know!
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1 What is a Matroid?

There are many ways to define a matroid. The gist is that you take a finite set S and add
some structure to S by identifying sets as independent sets1. These independent sets need
to satisfy certain axioms, usually if I is our collection of independent sets then we say

1. ∅ ∈ I

2. If A ∈ I and B ⊂ A, then B ∈ I

3. Something else (exchange axiom).

Here I’m being a bit murky about what this third axiom is. And the reason I’m doing that
is because there are several different ways to describe it. Vic describes the exchange axiom
in the following way:

3. (VR Exchange Axiom) Suppose I1, I2 ∈ I and that I1 has strictly larger cardinality
than I2, then there exists {a} ∈ I1 − I2 such that I2 ∪ {a} ∈ I.

Haray, Piff, and Welsh have an equivalent version of the exchange axiom. They say:

3. (HPW Exchange Axiom) Suppose I1, I2 ∈ I and that |I1| = |I2|+1, then there exists
{a} ∈ I1 − I2 such that I2 ∪ {a} ∈ I.

This is equivalent to the VR Exchange Axiom in the following way.

(⇒) The VR Exchange Axiom obviously implies the HPW Exchange Axiom.

(⇐) However, the argument bears fleshing out for the sake of precision. Let I, J ∈ I with
|I| > |J |. Let k = |J | + 1. Let I ′ be any k-subset of I. Then the HPW Exchange
Axiom tells us that there exists x ∈ (I ′−J) such that (J∪{x}) ∈ I. Since x ∈ (I ′−J)
and I ′ ⊂ I, it follows that x ∈ (I − J). This is precisely the condition of the VR
Exchange Axiom.

Example 1. Let’s consider the matroid structure on the following vectors in F3
2 indexed by

S = {1, 2, 3, 4, 5}. We have

v1 =

1
0
0

 , v2 =

0
1
0

 , v3 =

0
0
1

 , v4 =

1
1
1

 , and v5 =

0
1
0

 .

Here is what I looks like for this collection of vectors (note that I have dropped the vi
notation and simply list vectors by their indices)

I = {∅, 1, 2, 3, 4, 5, 12, 13, 14, 15, 23, 24, 34, 35, 45, 123, 124, 134, 135, 145, 234, 345}.
1You can also define independent sets via bases but I won’t discuss that here.
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Figure 1: A graph G with edges {1, 2, 3}.

Note that {v2, v5} 6∈ I since v2 = v5. Perhaps more interestingly {v1, v2, v3, v4} 6∈ I since
v1 + v2 + v3 = v4. Indeed, since our vector field is three-dimensional, linear algebra tells
us that no independent set will contain more than three vectors.

In this presentation, we’ll be focusing on graphic matroids, or matroids whose ground set
comes from the edge set of a finite, simple graph. The following two examples are of graphic
matroids.

Example 2. Let G be the graph shown in Figure 1. Then the edges E = {1, 2, 3, 4, 5} form
the ground set of a matroid whose independent sets are

I = {∅, 1, 2, 3, 12, 13, 23}.

Example 3. Let G be the graph shown in Figure 2. Then the edges E = {1, 2, 3, 4, 5} form
the ground set of a matroid whose independent sets are

I = {1, 2, 3, 4, 5,
12, 13, 14, 15, 23, 24, 25, 34, 35, 45,
124, 125, 134, 135, 145, 234, 235, 245, 345,
1245, 1345, 2345 }

1.1 Bases

Another way to characterize matroids is through bases. The bases B ⊂ I are a set of
maximal elements of I such that B 6= ∅ and the sets of B satisfy the basis exchange
property:

(Basis Exchange Property) Let A,B ∈ B with A 6= B. Then for a ∈ (A − B), there
exists b ∈ (B −A) such that (A− {a}) ∪ {b} ∈ B.

Example 4. In the first example the bases are the linear-algebraic bases (independent
spanning sets).

B = {123, 124, 134, 135, 145, 234, 345}.
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Figure 2: A graph G with edges {1, 2, 3, 4, 5}.

Example 5. Let G be the graph given in Figure 1. Then the spanning trees of G are the
bases. We have

B = {12, 13, 23}.

1.2 Variation: Independence Structures

We can make a small variation, allowing the ground set to be infinite. In this case, we call
the resulting object an independence structure and adding a fourth axiom. We say that I
has finite character.

4. (Finite Character) Let X ⊂ 2E be infinite. Then X is independent if every finite
subset Y ⊂ X is independent.

This is not the focus of this presentation, but it does show up in the statement of the main
theorem.

2 The Automorphism Group of a Matroid

2.1 What is the automorphism group of a matroid?

For the remainder of this section, we’ll take S to be a finite set and denote the cardinality
of S by n.

Definition (Preserves Independence). Let σ ∈ Sn. We say that σ preserves the indepen-
dence of our matroid structure if

I ∈ I ⇐⇒ σ(I) ∈ I.

Example 6. In our first example, the transposition (25) preserves independence since v2 =
v5 and so for any independent set containing v2, there must also be an independent set
containing v5.
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Non-example. In our first example, the transposition σ = (12) does not preserve indepen-
dence since {v1, v5} ∈ I but σ({v1, v5}) = {v2, v5} 6∈ I.

Definition (Automorphism Group of a Matroid). The automorphism group A(M) of a
matroid M with ground set S is a collection of permutations of S, which preserve inde-
pendence.

When our matroid is obtained from a graph G, I will sometimes abuse notation and
write A(G) instead of A(M(G)).
The first thing to notice is that this automorphism group will be a subset of Sn. In the
proof of the following proposition, we will use the fact that Sn is finite.

Proposition. The automorphism group of a matroid (or independence structure) is a
group.

Proof. We need to check the group axioms.

1. Closure. Suppose that σ1, σ2 ∈ A(M). Then for all I ∈ I, we have σ1(I) ∈ I. Then
σ2(σ1(I)) ∈ I. Then (σ2 ◦ σ1) ∈ A(M).

2. Associativity. Associativity is inherited.

3. Identity. Certainly permuting nothing preserves independence.

4. Inverses. Let σ ∈ A(M). Since σ preserves independence, it must also preserve
non-independence. Now let I ∈ I and consider σ−1(I). We know that

σ ◦ σ−1(I) = I ∈ I.

Then σ sends σ−1(I) to an independent set. Since σ preserves independence, it must
have been that σ−1(I) ∈ I.

Then A(M) is indeed a group.

We note that an independence-preserving permutation must also preserve cycles (otherwise
either it or its inverse wouldn’t preserve independence). It may be useful sometimes to use
this characterization of the automorphism group. In that case we will emphasize the cycles
by adding a C as a subscript to the A. Harary calls this the “cycle automorphism group”
and notes that AC(G) = A(M(G)). An explicit definition is given below.

Definition (Cycle Automorphism Group). The cycle automorphism group Ac(G) of G is
the set of all permutations σ such that for all cycles C ⊂ E, we have σ(C) is also a cycle
of G.
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Figure 3: A graph G with edges {1, 2, 3, 4, 5}.

Let G be a connected graph and let A(G) be the automorphism group of the associated
matroid. Then

AC(G) = A(G).

Intuitively, if AC(G) is precisely the set of permutations σ such that cycles of M(G) are
preserved, then σ must also preserve non-cycles (independent sets).

Example 7. Let G be the graph shown in Figure 3. Then the edges E = {1, 2, 3, 4, 5} form
the ground set of a matroid whose independent sets are

I = {1, 2, 3, 4, 5,
12, 13, 14, 15, 23, 24, 25, 34, 35, 45,
123, 125, 124, 135, 145, 234, 245, 345}

Instead of looking at which permutations preserve non-cycles, I looked at the permutations
that would not create or destroy cycles. For example, every cycle containing 1 must also
contain 4, so σ = (14) will preserve cycles. The same holds for 2 and 5. Then

A(G) = {( ), (14), (25), (14)(25)} ∼= Z2 × Z2.

2.2 Graph Theory

We’ll use graph theory to understand this group structure on a matroid. Frank Harary (who
was one of the main authors on this paper) was mostly a graph theorist. Indeed, according
to Wikipedia, he is widely recognized as one of the fathers of modern graph theory. Recall
that all matroids structures on graphs can be represented as matroid structures on sets of
vectors (linear matroids) or as field extensions (algebraic matroids).
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To that end, we look to Graphic Matroids and define two refinements of the previous
definition of an automorphism group. Let G = (V,E) be a finite, simple graph and for
i, j ∈ V , we denote an edge from i to j by (ij).

Definition (Point Automorphism Group). The point automorphism group Ap(G) of G is
the set of all permutations π such that for all edges (ij) ∈ E, the edge (π(i)π(j)) ∈ E as
well.

Definition (3-connected). Let G be a connected graph and let k be the minimum number
of vertices that must be removed from G in order to make G have more than one connected
component. If k ≥ 3, then we say that G is 3-connected.

In other words, we can remove one or two vertices from G and it will still be connected.
In the following Lemma, we’ll see that being able to remove one or two vertices from a
connected graph implies an isomorphism between the point automorphism group and the
cycle automorphism group.

Lemma 1 (Theorem 15.4.4 from (3)). If every pair of vertices lies in a circuit of G (G is
connected and has no “separating vertices”) then all circuit isomorphisms of G are induced
by isomorphisms of G if and only if G is 3-connected.

In our terminology, this implies that “If G is 3-connected, then Ap(G) ∼= Ac(G).”

Lemma 2. Let p be a positive integer. Let H be a finite group. Then there exists a finite,
p-connected graph G such that Ap(G) ∼= H.

Proof. See Sabidussi’s “Graphs of a given group and given graph-theoretical properties.”

Pretty much all the work in this paper is being done by Sabidussi’s theorem, which is
tricky. Indeed, his paper could be a presentation unto itself.

Lemma 3. Let p be a positive integer. Let H be a group. Then there exists a finite
p-connected graph G such that Ap(G) ∼= H.

Theorem 1 (Harary, Piff, Welsh). Let H be a group. Then there exists a graph whose
associated independence structure has automorphism group isomorphic to H.

Remark. An independence structure is a lot like a matroid but the ground set is allowed
to be finite. The independence question is “fixed” by saying that an infinite set Y is an
independent set if all finite subsets of Y are also independent. However, for the purpose of
this talk, I will only discuss finite groups and finite graphs (which yield matroids).

Proof. By Lemma 3, there exists a graph G such that Ap(G) ∼= H. We observed tht that
Ac(G) = A(M(G)). By Lemma 1 we have Ap(G) ∼= Ac(G) and so

H ∼= Ap(G) ∼= A(M(G)).

Thus we have H ∼= A(M(G)).
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Figure 4: A graph G with A(G) ∼= S5.

54321

Figure 5: A graph G with A(G) ∼= S5.

Corollary. Let H be a group. Then there exists a geometric lattice whose automorphism
group is isomorphic to H.

Example 8. LetH = S5. Then there are (at least) two graphs whose matroid automorphism
group is isomorphic to S5. They are given in Figure 4 and Figure 5.

There are two things to notice in the previous example. First cycle graph must have “full”
automorphism group. Second: so must a tree.

Proposition. Let G = (V,E) be a tree with n edges, then A(G) = Sn.

Proof. Since G contains no cycles, every subset of E is an independent set. Then for all
X ∈ I, we have σ(X) ∈ I.

Proposition. Let G = (V,E) is just a cycle with n edges, then A(G) = Sn.

Proof. By the construction of G, every subset X ⊂ E such that |X| < n is an independent
set. Since permutation preserves the number of elements in a set, applying any σ ∈ Sn to
X will produce another set of the same size. This again must be independent. Then for
all X ∈ I, we have σ(X) ∈ I.

The previous two theorems can be combined by looking at the bases of the associated
matroids. Indeed, there is a more general theorem about when you get Sn as your auto-
morphism group. It relies on information about the bases of a matroid.

Theorem 2 (Harary, Piff, Welsh). Let M be a matroid with a ground set E of cardinality
n. Then has A(M) = Sn if and only if M has as bases every k-subset of E for some k ∈ [n]
(i.e. is k-uniform).
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Example 9. Consider the graph G in Figure 4. Every 4-subset of edges is a spanning tree
of G. Since 4 ∈ [5], Theorem 2 tells us that the automorphism group A(G) of the matroid
associated to G is S|E| = S5.

Example 10. Consider the graph G in Figure 5. The full set of edges is a spanning tree of
G. There is only one 5-subset of 5. Since 5 ∈ [5], Theorem 2 tells us that A(G) ∼= S|E| = S5.

Theorem 3 (Harary, Piff, Welsh). There does not exist a matroid on a set of n elements
whose automorphism group is equal to the alternating group An for n ≥ 3.

3 Questions

1. Is it true that a finite group always leads to a finite graph? It is certainly true that
a finite graph always has a finite matroid automorphism group but there might be a
way to produce some kind of tiling of the plane whose underlying graph has a finite
automorphism group.

2. Is there a way to go from a group to a matroid without using graphs?

3. Can we generalize this for other kinds of matroids? All matroids yield an auto-
morphism group and all graphic matroids can be represented as either linear or
transcendental matroids. What about matroids arising from bipartite graphs?

4. What other information can you collect about matroids from the automorphism
group? (For example: given A(M), can we construct the flats of M?)

4 Sources

1. “On the Automorphism Group of a Matroid” by Harary, Piff, and Welsh (1971)

2. Vic Reiner’s notes on matroids.

3. O. Ore’s “Theory of Graphs”
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