
NOTES ON CHEREDNIK ALGEBRAS AND ALGEBRAIC
COMBINATORICS, MONTREAL 2017

STEPHEN GRIFFETH

Abstract. These are the notes for a short course given at the summer school Equivariant
Combinatorics at the CRM in Montreal. The notes contain somewhat more material than
was practical to cover in the course. The intended audience was graduate students and
researchers in algebraic combinatorics with no prior experience with Cherednik algebras, but
who are interested in the algebraic combinatorics having to do with Macdonald polynomials
and related objects.

1. Introduction

This is a rough draft! There are missing references, and incomplete sections.
Read at your own risk. -SG

The purpose of these notes is to explain some of the interactions between the representation
theory of rational Cherednik algebras and algebraic combinatorics, for an audience consisting
of graduate students and researchers in algebraic combinatorics. We will begin here by
introducing objects of interest on the combinatorial side, briefly mentioning how each arises
in representation theory. In the rest of the notes, we will explain several instances of a
general philosophy: in many cases, a ring or module of interest in algebraic combinatorics
carries a much more rigid structure than is at first apparent. Namely, it is an irreducible
module for the rational Cherednik algebra.

1.1. Preliminaries. We will work throughout with the polynomial rings

R = C[x1, x2, . . . , xn]

and

S = C[x1, x2, . . . , xn, y1, y2, . . . , yn],

on which the symmetric group Sn acts by permuting the variables,

w(xi) = xw(i) and w(yi) = yw(i) for w ∈ Sn and 1 ≤ i ≤ n.

We use the usual notation Z,Q,R,C for the integers, rational numbers, real numbers, and
complex numbers.

We will identify integer partitions with their Young diagrams. Thus for instance the
partition 9 = 4 + 2 + 2 + 1 of 9 is represented graphically by the Young diagram

.
1
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A tableau on a partition λ is a filling of the boxes of λ by elements of some other set. For
a partition λ of n, a standard Young tableau of shape λ is a filling of the boxes of λ by the
integers 1, 2, . . . , n in such a way that the entries are strictly increasing from left to right and
from bottom to top. We will write SYT(λ) for the set of all standard Young tableau on λ.

The irreducible complex representations of the symmetric group Sn are indexed by integer
partitions of n. Here is one realization: the Specht module Sλ indexed by λ is the Z-span
of the polynomials fT for T ranging over all tableaux of shape λ in which each number
1, . . . , n appears exactly once, where fT is defined to be the product of the Vandermonde
determinants over the columns of T . Thus for the standard Young tableau T

6
4 5
1 2 3

we have

fT = (x1 − x4)(x1 − x6)(x4 − x6)(x2 − x5).
As it turns out, Sλ is generated as a Z-module just by the fT for T ranging over standard
Young tableaux (but we will not prove this). This gives a representation

Sλ = Z{fT | T ∈ SYT(λ)}

of the integral group ring ZSn. Extending scalars to C gives an irreducible representation

SλC = C⊗Z S
λ = C{fT | T ∈ SYT(λ)}

of CSn, and up to isomorphism every irreducible representation of CSn occurs exactly once
in this fashion.

Exercise 1. For the partition λ = (2, 1) with Young diagram

work out the matrices of the permutations (12) and (23) on the basis fT of Sλ.

These polynomials fT are sometimes called Garnir polynomials. The span of the Garnir
polynomials of shape λ is the lowest degree occurrence of the irreducible module SλC, and the
multiplicity in this degree is one. We will write n(λ) for the degree of the Garnir polynomials
of shape λ.

Exercise 2. Give a formula for n(λ).

The next exercise is significantly more difficult than the preceding ones.

Exercise 3. Prove that SλC is indeed irreducible, that the ideal it generates in R contains
every other occurrence of its isotype in the polynomial ring, and that its multiplicity in degree
n(λ) is one. It may help to prove first that the polynomial fT satisfies (ij)fT = −fT for all
pairs i 6= j appearing in the same column of T , and divides every other polynomial with this
property.
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In fact, the exercise remains true for any field F of characteristic 0 in place of C, so don’t
be worried if your solution works in this greater generality!

A graded CSn-module is a CSn-module M equipped with a direct sum decomposition

M =
⊕
d∈Z

Md.

The graded character of a graded CSn-module is the expression

ch(M) =
∑
d,λ

[Md : SλC]sλq
d.

Here sλ is the Schur function indexed by λ. Likewise, a doubly graded CSn module is an
CSn-module M equipped with a direct sum decomposition M =

⊕
Mij, and its graded

character is then

ch(M) =
∑
i,j,λ

[Mij : SλC]sλq
itj.

It should always be clear from context how to interpret ch(M). If M is finite dimensional,
its character is a symmetric function with (with q, t-coefficients).

1.2. Garsia-Procesi rings, Hall-Littlewood polynomials, and Springer fibers. Given
a partition λ of n there is a unique ideal Iλ ⊆ R maximal among ideals J with the properties

(a) J is homogeneous and Sn-stable,
(b) J ∩ SλC = {0}.

The Garsia-Procesi ring GPλ is the quotient

GPλ = R/Iλ.

It is a graded, finite dimensional CSn module, and its graded character is the Hall-Littlewood
polynomial

Hλ = ch(GPλ).

There is of course another (more traditional) definition of the Hall-Littlewood polynomial,
and the identification with ch(GPλ is a non-trivial theorem.

Exercise 4. Check that there is indeed a unique maximal ideal satisfying the defining prop-
erties (a) and (b) above. Exercise 3 may be helpful.

Exercise 5. Let C[y1, . . . , yn] act on C[x1, . . . , xn] by partial differentiation:

yi(f) = ∂i(f) for f ∈ C[x1, . . . , xn]

and let Rλ be the submodule generated by the Garnir polynomials (so it is spanned by the
Garnir polynomials and all their partial derivatives of all order). Show that the natural map
Rλ → GPλ is an isomorphism of graded Sn-modules.

The Garsia-Procesi rings arise in representation theory via the nilpotent cone, flag variety
and the Springer resolution. The nilpotent cone is the set N of all n by n nilpotent matrices
with complex entries. The flag variety is the algebraic variety G/B, where G = GLn(C) and
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B is the subgroup consisting of invertible upper triangular matrices. As a set, G/B may be
identified with the set of all flags

0 = V0 ⊆ V1 ⊆ · · · ⊆ Vn = Cn

of subspaces of Cn, or alternatively we the set of all Borel subalgebras b of the Lie algebra
of n by n matrices. The cotangent bundle of G/B is in bijection with the set of pairs

T ∗(G/B) = {(x, b) | x is a nilpotent matrix and b is a Borel subalgebra containing x}.

Projection onto the first coordinate x is the Springer resolution of N ,

T ∗(G/B) −→ N .

The fibers of this map are the Springer fibers. The group GLn acts by conjugation on pairs
(x, b) and on N , so the isomorphism class of the fiber over x ∈ N depends only on the
conjugacy class of x. In other words, the Springer fibers are indexed, up to isomorphism, by
partitions of n. We will write Fλ for the Springer fiber indexed by the partition λ. If we fix
a nilpotent matrix x of Jordan type λ, then as a set

Fλ = {V∗ ∈ G/B | xVi ⊆ Vi for all i.}.

The largest Springer fiber occurs for x = 0, corresponding to the partition λ = (1n).
The corresponding Springer fiber F(1n) is isomorphic to G/B, and via a construction due to
Borel, its cohomology ring H∗(G/B,C) is isomorphic to the coinvariant ring R/I, where I
is the ideal generated by all homogeneous symmetric polynomials of positive degree. Each
Garsia-Procesi ring is a quotient of the coinvariant ring by a certain ideal.

The following theorem describes the connection between Springer fibers and the Garsia-
Procesi rings. In various forms it is due to Kraft [?], DeConcini-Procesi [?], Garsia-Procesi
[?], and Bergeron-Garsia [?].

Theorem 1.1. The natural map H∗(G/B,C) → H∗(Fλ,C) induces an isomorphism of
graded rings GPλ −→ H∗(Fλ,C).

1.3. The type Sn rational Cherednik algebra. Before we continue on to introduce more
complicated algebro-combinatorial objects, we pause to define the Cherednik algebra of the
symmetric groups. This is the algebra Hκ,c(Sn,C

n) generated by the symmetric group Sn,
commuting variables x1, . . . , xn, commuting variables y1, . . . , yn, and central parameters κ
and c subject to the relations

wxiw
−1 = xw(i) and wyiw

−1 = yw(i) for w ∈ Sn and 1 ≤ i ≤ n,

yixj = xjyi + c(ij) for 1 ≤ i 6= j ≤ n,

and

yixi = xiyi + κ− c
∑
j 6=i

(ij).

Without going into too much detail, we observe that the defining relations allow one to
rewrite any word in the generators as a linear combination of normally ordered words

xa11 · · ·xann y
b1
1 · · · ybnn w
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where w ∈ Sn. It is a somewhat deeper fact, usually referred to as the PBW theorem for
rational Cherednik algebras, that the normally ordered words are linearly independent. We
will indicate two proofs of this fact when we study Cherednik algebras more systematically.

When the parameters κ and c are specialized to c = 0 = κ, we obtain the ring

H0,0(Sn,C
n) = S o Sn,

whose representations are the same thing as representations of S on which Sn acts in a
compatible fashion. Much of the rest of these notes explores how various bigraded S o Sn-
modules may be deformed to Hκ,c-modules for certain parameters κ and c, and even in such
a way as to become irreducible.

1.4. Garsia-Haiman modules and Macdonald polynomials. The ring GPλ is an al-
gebraic avatar for Hall-Littlewood polynomials in the sense that its graded character is one.
There is a similar algebraic avatar for Macdonald polynomials, which was first introduced by
Garsia-Haiman [?]. Namely, write GPλ(x) = GPλ and let GPλ(y) be the analogous quotient
of C[y1, . . . , yn] in the y variables.

A finite dimensional graded and commutative C-algebra is Gorenstein if its socle is one-
dimensional.

Proposition 1.2. There is a unique bigraded Gorenstein quotient GHλ of GPλ(x)⊗GPλt(y)
that contains a copy of the sign representation.

The following theorem is due to Haiman and is variously known as the n! theorem or n!
conjecture.

Theorem 1.3. The dimension of GHλ is n!. Moreover,

ch(GHλ) = H̃λ,

where H̃λ is the plethystically transformed Macdonald polynomial (which we do not define
precisely in these notes).

We will see that GHλ maybe obtained as the associated graded of an irreducible represen-
tation L(λ) of H0,1.

Exercise 6. Coordinatize the boxes of the partition λ by labeling the box in the ith row from
the bottom and jth column from the left with (i − 1, j − 1). Enumerate the boxes in some
way by the numbers 1, 2, . . . , n, and let (ai, bi) be the coordinates of the ith box. Define

∆λ = det(xaij y
bi
j ).

Check that up to sign, this does not depend on the choice of enumeration of the boxes of λ,
and that when λ is a single row or column, this is just the usual Vandermonde determinant
in one set of variables. Prove (for all λ) that it is alternating in the sense (ij)∆λ = −∆λ

for all 1 ≤ i < j ≤ n.

Exercise 7. With the notation of the previous exercise, let S act on itself by the rule

xi(f) =
∂

∂xi
(f) and yi(f) =

∂

∂yi
(f) for f ∈ S and 1 ≤ i ≤ n.
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Show that the annihilator of ∆λ with respect to this action is precisely the ideal Iλ such that
S/Iλ = GHλ

1.5. Diagonal coinvariant rings, Catalan numbers, and parking functions. Just as
the Garsia-Procesi rings are quotients of the coinvariant ring, each Garsia-Haiman ring is a
quotient of the ring S = C[x1, . . . , xn, y1, . . . , yn] of polynomials in two sets of variables by
an ideal containing all positive degree diagonally symmetric polynomials. In other words,
each GHλ is a quotient of the diagonal coinvariant ring

D = S/I, where I = 〈f | f ∈ SSn is homogeneous of positive degree〉.
In fact, the diagonal coinvariant ringD also arises as the associated graded of an irreducible

representation L(n+1)/n(triv) of the rational Cherednik algebra H1,(n+1)/n(Sn, V ), where V is
the reflection representation of Sn.

1.6. The k-equals arrangement. Given positive integers k and n with 1 ≤ k ≤ n, the
k-equals arrangement in Cn is the subset Xk,n ⊆ Cn consisting of points (a1, a2, . . . , an)
having at least k coordinates equal to one another. In other words,

Xk,n = Sn{(x1, . . . , xn) | x1 = x2 = · · · = xk}.
We will write Ik,n for the ideal of the k-equals arrangement. As it turns out, Ik,n is generated
by the Garnir polynomials fT for T of shape (k − 1)q, r), where we have performed division
with remainder to obtain n = q(k − 1) + r for positive integers q and r < k − 1.

But much more is true: Ik,n is a unitary representation of the rational Cherednik algebra
of type Sn, and it seems very likely that one can use this fact to compute the Sn-modules

ToriC[x1,...,xn]
(Ik,n,C),

as conjectured by Christine Berkesch-Zamaere, Steven Sam, and the author [?].

Exercise 8. Check that the Garnir polynomials above really do vanish on Xk,n.

This is the end of the first lecture.

2. PBW theorems: Weyl algebras and rational Cherednik algebras

Our first goal is to introduce the rational Cherednik algebra for an arbitrary linear group,
and indicate how to prove the PBW theorem in two ways. As a warm-up, we think about
those two proofs for the Weyl algebra.

2.1. The Weyl algebra in dimension one. We write C[x] for the ring of polynomials in
one variable with complex coefficients.

Let A1 be the algebra generated by formal symbols x and ∂ satisfying the relation

∂x− x∂ = 1.

Exercise 9. For each positive integer m, prove the formula

∂xm = xm∂ +mxm−1,

allowing us to commute a ∂ past any power of x.
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Theorem 2.1. The algebra A1 has basis consisting of all monomials xm∂n for m,n non-
negative integers.

Proof. Let S be the linear span of these monomials. Then using the defining relation for A1

gives

xxm∂n = xm+1∂n and ∂xm∂n = xm∂n+1 +mxm−1∂n,

so S is closed under multiplication by the generators x and ∂ of A1 and hence is equal to
A1. We have proved that the given monomials span A1.

To prove linear independence, we will define an action of A1 on the polynomial ring C[z, w],
imagining that it is the left regular representation of A1 on itself. To do this we mimic the
preceding calculation: define the action of x and ∂ by the formulas

x(zmwn) = zm+1wn and ∂(zmwn) = zmwn+1 +mzm−1wn.

In order to verify that this defines a representation, we must check that these operators
satisfy the defining relation for A1:

(∂x− x∂)zmwn = zm+1wn+1 + (m+ 1)zmwn − (zm+1wn+1 +mzmwn) = zmwn.

Now suppose we have a linear dependence
∑
cmnx

m∂n = 0 in A1 and apply the left hand
side to the element 1 ∈ C[z, w]. We obtain

0 =
∑

cmnz
mwn

in C[z, w], implying that all cmn = 0. �

The above proof is the pattern which all subsequent proofs of basis theorems (in particular
the PBW theorem for the rational Cherednik algebra) will follow. Such a proof has two steps:
the first (usually easier) step is to observe that the defining relations allow us to rewrite any
word in the generators as a linear combination of words in which the letters appear in a
pre-ordained order. This proves that these normally ordered words span the algebra. The
second step consists in verifying that they are linearly independent by explicitly constructing
a particular representation; in the case above, this was the left regular representation. Some-
times, as in the case of Hecke algebras of Coxeter groups, it is more convenient to construct
the regular bimodule.

There is a second proof of the basis theorem for the Weyl algebra that also generalizes
to rational Cherednik algebras. Namely, instead of using the left regular representation, we
can use the representation of A1 on C[x] by differential operators. We will not follow this
idea through in detail.

In the Weyl algebra, multiplying two monomials xm∂n and xp∂q gives

xm∂nxp∂q = xm+p∂n+q + lower terms,

where the lower terms that appear are monomials of total degree less than m+n+p+ q (or,
∂ degree less than n+q). Thus, ignoring these lower degree terms produces multiplication of
commutative polynomials in two variables. So the polynomial ring C[x, y] in two variables
is an approximation to the Weyl algebra A1 in a certain sense. We will make precise what
we mean by this using filtered algebras and their associated graded algebras.
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The natural generality for discussing this is as follows: let R be a ring. A (non-negative,
increasing) filtration on R is a nested sequence F of additive subgroups

F = (F0 ⊆ F1 ⊆ F2 ⊆ · · · )
of the underlying additive group of R with the property that for all non-negative integers
i, j we have

FiFj ⊆ Fi+j.

If R is an algebra over a commutative ring k, then we ask in addition that the Fi are
k-submodules. The associated graded ring has underlying additive group

grF (R) =
⊕
d∈Z≥0

Fd/Fd−1,

where by convention F−1 = 0. Multiplication is defined by

rs = rs for r ∈ Fi/Fi−1 and s ∈ Fj/Fj−1,
where we use the symbol · to denote projection onto a quotient.

Exercise 10. Check that this is well-defined, and that with this definition grF (R) is indeed
a ring.

Exercise 11. Suppose (R,F ) is a filtered ring such that grF (R) is left (resp., right) Noe-
therian. Show that R is left (resp., right) Noetherian as well.

Exercise 12. If R Suppose (R,F ) is a filtered ring such that grF (R) is a domain. Show
that R is a domain.

The ring A1 isn’t commutative, but it is almost commutative in the sense that it may be
endowed with a filtration F in such a way that the associated graded algebra grF (A1) ∼=
C[x, y] is isomorphic to the (commutative) ring of polynomials in two variables. There are
several possible choices for F : one may take F≤d to be the span of all words of degree d in
x and ∂, where we consider x and ∂ to both be of degree 1. This is known as the Bernstein
filtration. Or, we may take the filtration in which ∂ has degree one and x has degree 0; this
is known as the order filtration.

Exercise 13. Show that with respect to either of these filtrations, the associated graded
algebra is isomorphic to a polynomial ring in two variables.

2.2. The Weyl algebra in general. Let V be a finite dimensional C-vector space with
dual space V ∗. We will write T (V ∗ ⊕ V ) for the tensor algebra on the vector space direct
sum V ∗ ⊕ V . If we fix a basis y1, . . . , yn of V with dual basis x1, . . . , xn of V ∗, then we
may identify T (V ∗⊕V ) with the free associative algebra on x1, . . . , xn, y1, . . . , yn (sometimes
called the polynomial ring in non-commuting variables).

The Weyl algebra of V is the algebra D(V ) defined by

D(V ) = T (V ∗ ⊕ V )/(yx− xy = 〈x, y〉 | for x ∈ V ∗ and y ∈ V .).

Exercise 14. Choose a basis y1, . . . , yn of V with dual basis x1, . . . , xn of V ∗. Prove that the
monomials xa11 · · ·xann y

b1
1 · · · ybnn are a basis of D(V ).
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Exercise 15. Define the Bernstein and order filtrations on D(V ) and prove that the asso-
ciated graded algebras for both are isomorphic to polynomial rings in 2n variables, where n
is the dimension of V .

2.3. Semidirect products. Let R be a C-algebra and suppose W is a group acting on R
by algebra automorphisms. Given r ∈ R and w ∈ W we will write w(r) for the action of w
on r. We define an new algebra RoW as follows: as a C-vector space RoW = R⊗C CW
is the tensor product of R and the group algebra of W . The multiplication is determined by
the formula

(r1 ⊗ w1)(r2 ⊗ w2) = r1w1(r2)⊗ w1w2 for r1, r2 ∈ R and w1, w2 ∈ W .

2.4. The rational Cherednik algebra. Let h be a finite dimensional C-vector space and
let W ⊆ GL(h) be a finite group of linear transformations of h. Let

R = {r ∈ W | codim(fix(r)) = 1}

be the set of reflections in W . For each r ∈ R, choose αr ∈ h∗ and α∨r in h with

r(x) = x− 〈x, α∨r 〉αr for all x ∈ h∗.

Fix κ ∈ C and cr ∈ C for each r ∈ R with the property that cr = cwrw−1 for all r ∈ R and
w ∈ W .

The rational Cherednik algebra Hκ,c = Hκ,c(W,V ) is the quotient of T (V ) o W by the
relations

yx− xy = 0 if x, y ∈ h or x, y ∈ h∗

and

yx− xy = κ〈x, y〉 −
∑
r∈R

cr〈αr, y〉〈x, α∨r 〉r if y ∈ h and x ∈ h∗.

Exercise 16. Check that the quantity 〈αr, y〉〈x, α∨r 〉 is independent of the choice of αr and
α∨r satisfying r(x) = x− 〈x, α∨r 〉αr.

According to the exercise, the Cherednik algebra depends only upon the parameters κ and
cr, justifying the notation.

The second lecture ended here.

2.5. Fourier transform. There is an anti-automorphism of the Weyl algebra A1 interchang-
ing x and ∂, sometimes known as the Fourier transform. Its existence follows immediately
from the definition: such an anti-automorphism exists for the free associative algebra on x
and ∂ and maps the relation ∂x− x∂ − 1 to itself.

There is also a Fourier transform for the Cherednik algebra, interchanging h and h∗.
However, because such an anti-automorphism must respect the W -action (in order to exist
already for T (V )oW ), we are forced to define it to be conjugate linear instead of C-linear.
More precisely, a map f : h→ h∗ is conjugate linear if

f(x+ y) = f(x) + f(y) and f(ax) = af(x) for all x, y ∈ h and a ∈ C.
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Exercise 17. Prove that there exists a conjugate linear isomorphism f : h→ h∗ such that

f(w(y)) = w(f(y)) for all w ∈ W and y ∈ h.

Prove that if W acts irreducibly on h then such an isomorphism is unique up to scalars.

We choose and fix an isomorphism as constructed in the exercise, and write it as conju-
gation: thus for y ∈ h its image in h∗ will be written y, and we will use the same notation
for the inverse, mapping x ∈ h∗ to x. Thus y = y.

Exercise 18. Check that for r ∈ R we have

r−1(x) = x− 〈x, αr〉α∨r for all x ∈ h∗.

Lemma 2.2. Let h → h∗, written y 7→ y as above, be a W -equivariant conjugate linear
isomorphism. Write c for the parameter defined by cr = cr−1. There is a unique anti-
isomorphism φ : Hκ,c → Hκ,c such that

φ(x) = x, φ(y) = y and φ(w) = w−1 for all x ∈ h∗, y ∈ h, and w ∈ W .

Proof. There is an anti-isomorphism φ : T (V )oW → T (V )oW defined by these formulas,
using the compatibility of y with the W -action. We must check that it maps the defining
ideal for Hκ,c into that for Hκ,c. We have

φ(yx−xy − κ〈x, y〉+
∑
r∈R

cr〈αr, y〉〈x, α∨r 〉r)

= xy − yx− κ〈x, y〉+
∑
r∈R

cr〈αr, y〉〈x, α∨r 〉r−1

= xy − yx− κ〈y, x〉+
∑
r∈R

cr−1〈α∨r , x〉〈y, αr〉r−1

Using the fact that r−1(x) = x− 〈x, αr〉α∨r for all x ∈ h∗ finishes the proof. �

2.6. Filtered deformations of Sym(V ) o W . In order to prove the PBW theorem for
rational Cherednik algebras, it turns out to be more efficient to work with more general
hypotheses. In this section we will work with a field F , a finite dimensional F -vector space
V and a finite group W ⊆ GL(V ) of linear transformations of V .

Write T (V ) for the tensor algebra of V . If we fix a basis v1, . . . , vn of V then T (V ) has basis
consisting of all words in the letters v1, . . . , vn, and multiplication is simply concatenation
of words. The group W acts by automorphisms on T (V ) so we may form the semi-direct
product algebra T (V ) oW .

Now Sym(V ) oW is the quotient of T (V ) oW by the two-sided ideal generated by the
elements yx− xy for x, y ∈ V . We attempt to deform the relation yx− xy = 0 by replacing
0 by an element (x, y) ∈ FW of the group algebra, and ask what conditions on (x, y) ensure
that the PBW theorem holds. That is, if we fix a basis v1, . . . , vn of V as above, what
conditions on (x, y) imply that the elements ve11 · · · venn w for ei ∈ Z≥0 and w ∈ W are a basis
of the quotient

H = T (V ) oW/〈yx− xy − (x, y) | x, y ∈ V 〉.
Our aim is to prove:



NOTES ON CHEREDNIK ALGEBRAS AND ALGEBRAIC COMBINATORICS, MONTREAL 2017 11

Theorem 2.3. Let (·, ·) : V ⊗F V → FW be a skew-symmetric F -bilinear form on V with
values in FW and fix a basis v1, . . . , vn of V . Write

(x, y) =
∑
w∈W

(x, y)ww

for F -valued bilinear forms (x, y)w. The words ve11 · · · venn w for ei ∈ Z≥0 and w ∈ W are a
basis of the quotient

H = T (V ) oW/〈yx− xy − (x, y) | x, y ∈ V 〉

if and only if

(a) (w(x), w(y)) = w(x, y)w−1 for all x, y ∈ V and w ∈ W , and
(b) For x, y, z ∈ V and w ∈ W ,

(x, y)w(w(z)− z) + (y, z)w(w(x)− x) + (z, x)w(w(y)− y) = 0.

Proof. First suppose the PBW theorem holds. The equality

w(x, y)w−1 = w[x, y]w−1 = [w(x), w(y)] = (w(x), w(y))

implies that (a) holds. The equality

0 = [[x, y], z]]+[[y, z], x]+[[z, x], y] =
∑
w

((x, y)w(w(z)−z)+(y, z)w(w(x)−x)+(z, x)w(w(y)−y)))w

implies that (b) holds.
For the converse, we observe first that the relations allow us to rewrite any word in

v1, v2, . . . , vn and W in the specified order. This implies that the normally ordered words
span H. We now define a representation of H on the vector space

F [u1, . . . , un]⊗F FW

as follows. For 1 ≤ i ≤ n, the action of vi is defined inductively by

vi · w = viw for w ∈ W ,

vi · ui1ui2 · · ·uipw = uiui1 · · ·uipw if i ≤ i1,

vi · ui1ui2 · · ·uipw = vi1 ·
(
vi · ui2 · · ·uipw

)
+ (vi, vi1) · ui2 · · ·uipw

for i > i1, and finally, for w ∈ W ,

wua11 · · ·uann w′ = (w(v1))
a1 · · · (w(vn))an · ww′.

Note that there are really two inductions going on here: the first is in the length p of the
word on which we are acting, and the second is on the index i of the element that is acting.
We leave as a (long!) exercise the verification that these satisfy the defining relations. The
proof now ends exactly as for the Weyl algebra. �

Exercise 19. Check that the operators defined above satisfy the defining relations for H and
complete the proof of the theorem.
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Now suppose h is a finite dimensional F -vector space and W ⊆ GL(h) is a finite group of
linear transformations of h. We put V = h∗ ⊕ h, and observe that we then have a natural
embedding W ⊆ GL(V ) given by the actions of W on h and h∗. In this situation we can
make the conditions (a) and (b) in the PBW theorem much more explicit.

Notice that (b) implies that if (x, y)w 6= 0 then the image of w−1 is contained in the span
of w(x)− x and w(y)− y, and hence is at most two dimensional. In other words, the fixed
space of w acting on V must have codimension at most two. But this fixed space is precisely
the sum of the fixed spaces of w on h and h∗, so there are two possibilities: either w is the
identity element, or the fixed space of w on h has codimension 1. Linear transformations
with this property are called reflections (sometimes, one asks for semisimplicity of w, which
is automatic if F has characteristic 0). We have proved that (x, y)w = 0 for all w except
possibly the identity and the reflections.

Lemma 2.4. Suppose F = C. As before, let

R = {r ∈ W | codimh(fixh(r)) = 1}
be the set of reflections in W . Then for each r ∈ R, the space of r-invariant skew-symmetric
bilinear forms (x, y)r satisfying condition (b) in the theorem for w = r is one dimensional,
spanned by the skew-symmetric form (x, y)r defined by

(x, y)r = 〈αry〉〈x, α∨r 〉
for x ∈ h∗ and y ∈ h, while (x, y) = 0 if x, y ∈ h or x, y ∈ h∗.

Proof. We first observe that if x, y ∈ fixV (r) then (x, y)r = 0 by condition (b). Likewise, if
x ∈ fixV (r) and y ∈ V , then by r-invariance

(x, (1− r)y)r = (x, y)r − (x, r(y))r = (x, y)r − (r−1(x), y)r = 0.

Since we are working over C each linear transformation of finite order is semi-simple, and
hence V is the direct sum of fixV (r) and the image of 1 − r. Thus the radical of the form
contains fixV (r), which is codimension two in V . But there is a one-dimensional space of
skew-symmetric forms on a two-dimensional vector space. It remains only to observe that
the given form is r-invariant and satisfies (b). The r-invariance is easy, and to verify (b) by
linearity and the cyclic symmetry of the identity we may assume that x, y ∈ h∗ and z ∈ h.
Then (b) holds by a very short calculation. �

Corollary 2.5. The rational Cherednik algebra satisfyies the PBW theorem.

2.7. Dunkl operators. Here we briefly explain the relation to Dunkl operators.

Exercise 20. Prove by induction on d that for a polynomial f ∈ C[V ] of degree d and any
y ∈ V we have, working in Hκ,c,

yf = fy + κ∂y(f)−
∑
r∈R

cr〈αr, y〉
f − r(f)

αr
r.

Exercise 21. The polynomial representation C[x] of the first Weyl algebra A1 may be con-
structed as an induced representation

C[x] = IndA1

C[∂](C),
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where C is the one-dimensional C[∂]-module on which ∂ acts by 0.

With the preceding exercise as motivation, we define a polynomial representation of the
rational Cherednik algebra by

∆κ,c(1) = Ind
Hκ,c
C[h]∗oW (C),

where C is the one-dimensional C[h]∗oW -module on which W acts trivially and each y ∈ h
acts by 0.

Exercise 22. Prove that as a C[h] o Sn-module we have

∆κ,c(1) = C[h],

and that the action of y ∈ h is given by

y(f) = κ∂y(f)−
∑
r∈R

cr〈αr, y〉
f − r(f)

αr

for all f ∈ C[h].

These are the famous Dunkl operators. They commute! This follows from what we have
done, but it is not at all obvious from the formula that it should be so (nor was it an obvious
thing to arrive to the formula in the first place, which historically did not occur in the way
in which we have derived it).

The third lecture ended here.

2.8. Standard modules and contravariant forms. In this subsection we generalize the
construction above that produced Dunkl operators by replacing the trivial representation of
W by another representation. Let E be an irreducible CW -module. The standard module
∆κ,c(E)) is defined by

∆κ,c(E) = Ind
Hκ,c
C[h∗]oW (E),

where we define the action of C[h∗] on E by ye = 0 for all y ∈ h and e ∈ E, making E a
C[h∗] oW -module.

Exercise 23. Prove that ∆κ,c(E) ∼= C[h] ⊗C E as a C[h] oW -module, and that via this
identification the action of y ∈ h on f ⊗ e for f ∈ C[h] and e ∈ E is given by the formula

y(f ⊗ e) = κ∂y(f)⊗ e−
∑
r∈R

cr〈αr, y〉
f − r(f)

αr
⊗ r(e).

As motivation for the definition of the contravariant form on the standard module, we recall
the following very useful construction with polynomials: one may define a non-degenerate
bilinear form by (f, g) = (f(∂)g)(0) for f, g ∈ C[x]. There is also a positive definite Hermitian
version of this definition, obtained by conjugating the coefficients of f . This form on C[x] is
compatible with the A1 action in the sense that (xf, g) = (f, ∂g).

Now suppose the parameters κ and c are real in the sense that κ is real and cr = cr−1 .
Thus the Fourier transform φ is an anti-automorphism of Hκ,c. Each standard module carries
a contravariant form, defined by the formula

(f1 ⊗ e1, f2 ⊗ e2)κ,c = (e1, (φ(f1) · f2 ⊗ e)(0)),
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where we evaluate at zero by regarding each element of C[h] ⊗ E as a function on h with
values in E, and where we have fixed a positive definite Hermitian W -invariant form (·, ·)
on E.

Lemma 2.6. The contravariant form is linear in the second variable, conjugate linear in
the first variable, and satisfies

(f1, f2)κ,c = (f2, f1)κ,c.

Moreover, for all h ∈ Hκ,c and f1, f2 ∈ ∆κ,c(E) we have

(hf1, f2)κ,c = (f1, φ(h)f2)κ,c.

Exercise 24. Prove the lemma.

With the contravariant form in hand we can define a distinguished irreducible quotient
Lκ,c(E) of ∆κ,c(E): we take R to be the radical of the contravariant form and define

Lκ,c(E) = ∆κ,c(E)/R.

Exercise 25. Check that this quotient is irreducible and graded (with respect to polynomial
degree), and that it is the unique graded irreducible quotient of the standard module.

As it turns out, the standard modules have an internal grading when κ 6= 0, so every
quotient is graded and hence Lκ,c(E) is in fact the unique irreducible quotient in this case.

2.9. Category Oc(W, h). The Serre subcategory of H1,c(W,V )-mod generated by the stan-
dard modules can be described directly as follows. The category Oc(W, h) consists of finitely
generated H1,c(W, h)-modules M that are locally nilpotent for the action of each y ∈ h in
the sense that for each m ∈ M , there is some positive integer n with yn · m = 0 for all
y ∈ h. If M and N belongs to Oc then so does any extension of M by N , as do quotients
and submodules. The standard modules belong to Oc, and hence the Serre subcategory they
generate is contained in Oc. It is not hard to check that they are in fact equal:

Exercise 26. Define a thickened standard module by

∆κ,c,m(E) = Ind(C[h∗]m ⊗ E)

Show that each of these possesses a finite filtration with layers sums of standard modules,
and that every module in Oc is a quotient of a sum of thickened standard modules.

It is a fact that the relation E ≤ F if there exists a non-zero homomorphism ∆c(E) →
∆c(F ) generates a partial order on Irr(CW ) (this is the coarsest ordering with respect to
which Oc is a highest weight category). We do not have a combinatorial description of this
order even for the symmetric group case. One might expect that this partial order is always
graded, but this too seems to be open in general.

Here is one theorem indicating the sorts of combinatorics one might expect to show up:

Theorem 2.7. Let a and k be relatively prime positive integers. If there is a non-zero map
∆a/k(λ) → ∆a/k(µ) then there are standard Young tableaux T ∈ SYT(λ) and U ∈ SYT(µ)
such that

1

k

(
ct(U−1(i))− ct(T−1(i))

)
∈ Z≥0

for all i.
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Exercise 27. Use the theorem to show that if such a map exists, then λ is at most µ in
dominance order, and they have the same k-core.

3. Cherednik algebras and Garsia-Haiman modules

In this section we will study the algebra Hκ,c = Hκ,c(Sn,C
n), and explain its relationship

to the Garsia-Haiman modules in more detail.

3.1. Jucys-Murphy-Young elements. The symmetric groups form a chain S1 ⊆ S2 ⊆
S3 ⊆ · · · , and it is natural to study their representation theory starting with the study of
the restriction functor from kSn-mod to kSn−1-mod (for k a field). Given an endomorphism
of this functor, one can hope to decompose it into eigenfunctors and study the result; this
theme has been very fruitful in modern representation theory, and is currently studied as
part of categorification.

Concretely, endomorphisms of the restriction functor come from elements of the centralizer
of kSn−1 in kSn. The most obvious such elements are orbit sums such as the Jucys-Murphy-
Young element

φn = (1n) + (2n) + · · ·+ (n− 1, n).

Here we state (but will not prove) the resulting decomposition rule for k = C.

Theorem 3.1. The restriction of SλC to Sn−1 is

res(SλC) =
⊕

removable boxes

S
λ\b
C ,

and the action of φn on the component obtained by removing b is by the scalar ct(b).

Exercise 28. Write si = (i, i + 1) for the simple transposition interchanging i and i + 1.
Then show siφisi = φi+1 − si, or in other words siφi = φi+1si − 1. (This is the origin of the
relation between symmetric group representations and the KLR algebras).

3.2. Young’s orthogonal form. The branching rule for the symmetric group leads to the
construction of certain orthogonal basis vT for SλC, indexed by T ∈ SYT(λ). These are
eigenvectors for the Jucys-Murphy-Young elements φi

φivT = ct(T−1(i))vT

and may be normalized so as to transform according to the rules

sivT = vsiT +
1

ct(T−1(i+ 1))− ct(T−1(i))
vT if `(siT ) > `(T )

and

sivT =

(
1− 1

(ct(T−1(i+ 1))− ct(T−1(i)))2

)
vsiT +

1

ct(T−1(i+ 1))− ct(T−1(i))
vT

if `(siT ) < `(T ).
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3.3. The trigonometric Dunkl operators. Working inHκ,c(Sn,C
n), we define the trigono-

metric Dunkl operators zi by

zi = yixi + cφi.

Computing with the defining relations gives

[yixi, yjxj] = c(yjxj − yixi)(ij)

and hence for i < j

[yixi+cφi, yjxj+cφj] = c(yjxj−yixi)(ij)+c[yixi, φj] = c(yjxj−yixi)(ij)+c(yixi−yjxj)(ij) = 0.

Thus the zi’s commute with one another.
What about their relations with the other generators of Hκ,c? Evidently zj commutes with

si for j 6= i, i+ 1. Next, we have

sizi = siyixi + csiφi = yi+1xi+1si + c(φi+1si − 1) = zi+1si − c.

By induction on the degree of the polynomial f(z1, . . . , zn) one proves the more general
relation

sif = si(f)si − c
f − si(f)

zi − zi+1

,

where we have written si(f) for the polynomial in z1, . . . , zn obtained from f by swapping
zi and zi+1. It follows that symmetric polynomials in the zi’s commute with Sn.

The zi’s don’t seem to have particularly nice commutation relations with xi’s or yi’s. As
a replacement, define the Knop-Sahi intertwiners

Φ = xn(n, n− 1, . . . , 2, 1) and Ψ = y1(1, 2, . . . , n− 1, n).

We are using cycle notation; we might also write Φ = xnsn−1sn−2 · · · s2s1 and Ψ = y1s1s2 · · · sn−1.

Exercise 29. Show that

ziΦ = Φzi+1 for 1 ≤ i ≤ n− 1,

and

znΦ = Φ(z1 + κ).

Conclude that if κ = 0 then any symmetric polynomial in zi’s commutes with Φ. Apply the
Fourier transform to show that if κ = 0 then any symmetric polynomial in zi’s commutes
with Ψ.

Since Hκ,c is generated as an algebra by Sn, Φ, and Ψ. Thus C[z1, . . . , zn]Sn is central in
H0,c(Sn,C

n).

3.4. The action of z1, . . . , zn on ∆κ,c(λ). Given a composition µ = (µ1, . . . , µn) we write
wµ ∈ Sn for the longest permutation such that wµ(µ) is non-decreasing. Recall the basis vT
of SλC constructed in 3.2. The elements xµwµ(vT ) are a basis of ∆κ,c(λ), and on this basis
the action of zi is given by .
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3.5. Finite dimensional representations of Hκ,c(Sn,C
n): Etingof’s trick. Noting that

for i 6= j then working in Hκ,c we have

[yi, xj] = csij

implies that if c 6= 0 then the trace of sij on any finite-dimensional representation of H0,1 is
zero. This observation generalizes as follows: if w(i) = i then

[yi, wxj] = [yi, w]xj + w[yi, xj] = (yiw − wyi)xj + cwsij = cwsij

since wyi = yiw. Now for v ∈ Sn non-trivial we choose i 6= j with i = v(j) and set w = vsij.
Then v = wsij and the preceding calculation shows that v is a commutator if c 6= 0. It
follows that the trace of v on any finite-dimensional Hκ,c-module is 0 if c 6= 0, and hence
that each finite-dimensional Hκ,c-module is a multiple of the regular representation. As it
turns out, there is a copy of A1 inside H1,c, which therefore has no finite dimensional modules.
However, the finite dimensional modules of H0,1 are both plentiful and interesting.

Exercise 30. Show that the subalgebra of H1,c generated by x1 + x2 + · · ·+ xn and y1 + y2 +
· · ·+ yn is isomorphic to the Weyl algebra A1. Use this fact to prove that there are no non-
zero finite dimensional H1,c-modules (by proving that A1 has no non-zero finite dimensional
modules).

3.6. The center of H0,1. Will will fix κ = 0 and c = 1 for this subsection, and abbreviate
H = H0,1. Writing Z = Z(H) for the center of H, we have seen that it contains the
subalgebras

C[x1, . . . , xn]Sn , C[y1, . . . , yn]Sn , and C[z1, . . . , zn]Sn .

Exercise 31. Prove that the ring C[x1, . . . , xn, y1, . . . , yn]Sn is generated by C[x1, . . . , xn]Sn,
C[y1, . . . , yn]Sn, and C[x1y1, . . . , xnyn]Sn. If it helps, you may assume that the polarized
power sums

pi,j = xi1y
j
1 + xi2y

j
2 + · · ·+ xiny

j
n

generate it (this is a classical result of Weyl).

Theorem 3.2. The three subalgebra

C[x1, . . . , xn]Sn , C[y1, . . . , yn]Sn , and C[z1, . . . , zn]Sn

generate the center Z of H. Moreover, letting Gd = Fd ∩ Z, where F is the filtration on H
defined given by total degree in x and y, the natural map

grG(Z)→ Z(C[x1, . . . , xn, y1, . . . , yn] o Sn) = C[x1, . . . , xn, y1, . . . , yn]Sn

is an isomorphism.

Proof. We write Z ′ for the subalgebra of Z generated by the three algebras of symmetric
polynomials in the statement of the theorem. We then have injections

grH(Z ′) ↪→ grG(Z) ↪→ C[x1, . . . , xn, y1, . . . , yn]Sn ,

where Hd = Fd ∩Z ′ is the induced filtration, and by the previous exercise their composite is
surjective. The theorem follows from this. �
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The theorem is a consequence of work of Etingof-Ginzburg and Martino, which gives a
somewhat different proof.

Exercise 32. We will not use this in the sequel, but we mention here a corollary of the
theorem. Show that the map Z → eHe given by z 7→ ze is a ring isomorphism. Etingof-
Ginzburg proved this fact for general symplectic groups W , and call this map the Satake
isomorphism.

Corollary 3.3. Let L be an irreducible H-module. Then as a CSn-module, L is isomorphic
to the regular representation L ∼= CSn.

Proof. Since H is module-finite over Z, every irreducible H-module is finite dimensional. By
Etingof’s trick, L is a multiple of the regular representation. Let l ∈ L be a non-zero Sn-
invariant in L. The map He→ L given by he 7→ hel is surjective since L is irreducible. We
define G to be the filtration induced on L from the filtration Fd∩He on He. Upon taking the
associated graded objects we have a surjection C[x1, . . . , xn, y1, . . . , yn] = grF (He)→ grG(L),
and since Z acts by scalars on L it follows that this map factors through the diagonal
coinvariant ring. Thus the multiplicity of the trivial CSn-module in L is at most one, and
hence L is the regular representation. �

We will continue to use the filtration G on L defined in the proof above. But first, we
observe that the Garsia-Procesi ring GPλ may be located inside L for L = L(λ). To prove
this, we need:

Lemma 3.4. We have

{l ∈ L(λ) | yl = 0 for all y ∈ h} = L(λ)0 = SλC.

Proof. Recall that L(λ) is graded by definition. Suppose that yl = 0 for some l ∈ L(λ) of
positive degree. The subspace (C[x1, . . . , xn] o Sn)l is then an H submodule contained in
the span of positive degree elements of L(λ), contradicting irreducibility. �

Now observe that the map C[y1, . . . , yn] → L(λ) sending f(y) to f(y)t, where t ∈ L(λ)
is a fixed non-zero Sn-invariant, has kernel contained in the defining ideal Iλ of the Garsia-
Procesi ring: the latter is the largest homogeneous Sn invariant ideal not containing SλC, and
since the kernel does not contain at least one copy of the isotype SλC, it cannot contain the
minimal one (the ideal generated by the latter contains all other occurences by the argument
used to solve exercise ??? Ugh. Fix this -SG.

4. Finite Hecke algebras, monodromy, and the Knizhnik-Zamolodchikov
functor

Here we explain one of the key tools used to study the structure of category Oc: the
Knizhnik-Zamolodchikov functor

KZc : Oc −→ HW (e2πic)−mod,

where HW is the finite Hecke algebra of W .
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4.1. Non-commutative rings of fractions. The first step in the construction of the KZ
functor is the observation that upon inverting the discriminant

δ =
∏
H∈A

αH

Let R be a ring and S ⊆ R a subset. We say that S is multiplicative if 1 ∈ S and if
s, t ∈ S then st ∈ S. We say that S satisfies the right Ore conditions if

(a) S is a multiplicative subset of R,
(b) For all r ∈ R and s ∈ S we have rS ∩ sR 6= ∅, and
(c) If r ∈ R and s ∈ S with sr = 0 then there is some t ∈ S with rt = 0.

Note that if R is a commutative ring then every multiplicative subset satisfies the Ore
conditions.

Given a a ring R and a subset S ⊆ R satisfying the right Ore conditions, we may define
the right ring of fractions RS−1 by ???

As an example, suppose f ∈ C[x] is a non-zero polynomial. Take S = {fn | n ∈ Z≥0} to
be the set of all powers of f , which is a subset of the Weyl algebra A1. This is evidently a
multiplicative subset. To see that it satisfies the Ore condition (b), given a ∈ A1 and fn ∈ S
we seek b ∈ A1 and fm ∈ S with afm = fnb.

4.2. The equality Hc[δ
−1] = D(h◦) oW allows us to define the localization functor

Hc−mod→ D(h◦) oW−mod

by M 7→ M [δ−1]. Here we describe the images of the standard modules by this functor
explicitly.

The formula for the Dunkl operators

y = ∂y −
∑
r∈R

cr〈αr, y〉
1

αr
(1− r)

implies the equality in D(h◦) oW

∂y = y +
∑
r∈R

cr〈αr, y〉
1

αr
(1− r).

Thus the action of ∂y ∈ D(h◦) oW on the localization of the standard module ∆c(E)[δ−1]
is given by

∂y(f ⊗m) = y(f ⊗m) +
∑
r∈R

cr〈αr, y〉
1

αr
(1− r)(f ⊗m)

= ∂y(f)⊗m−
∑
r∈R

cr
〈αr, y〉
αr

((f − r(f))⊗ r(m)− f ⊗m+ r(f)⊗ r(m)))

= ∂y(f)⊗m+
∑
r∈R

cr
〈αr, y〉
αr

f ⊗ (m− r(m)).

This formula makes sense for any analytic function f , and hence defines a flat connection
on the vector bundle h◦×E → h◦ with fiber E. A flat section of this vector bundle with flat
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connection is an analytic map f : V → E on some open subset V ⊆ h◦ with ∂y(f) = 0 for all
y ∈ h. Given a point p ∈ h◦, by the theory of linear partial differential equations there exists
a neighborhood U of p such that for any neighborhood V of p contained in U the dimension
of the space of flat sections f : V → E is d = dim(E).

5. Appendix: Serre quotient categories and adjoint pairs

Let k be a commutative ring, let C and D be abelian k-linear categories and let F : C → D
and G : D → C be k-linear functors. An adjunction (F,G) between F and G consists of two
natural transformations ε : FG→ 1 and η : 1→ GF such that the induced maps

Hom(F (X), Y )
G→ Hom(GF (X), G(Y ))

η→ Hom(X,G(Y ))

and
Hom(X,G(Y ))

F→ Hom(F (X), FG(Y ))
ε→ Hom(F (X), Y )

are inverse isomorphisms. If we write let (F,G) be an adjoint pair of functors we mean that
we have fixed an adjunction as above.

Let C be a category. A Serre subcategory of C is a full subcategory T ⊆ C closed under
subobjects, quotients, and extensions. If T ⊆ C is a Serre subcategory, the Serre quotient
category C/T is the category with the same set of objects as C and with hom sets defined
by

HomC/T (X, Y ) = lim
→

HomC(X ′, Y/Y ′),

where the direct limit is over all pairs of subobjects X ′ ⊆ X and Y ′ ⊆ Y such that X/X ′ ∈ T
and Y ′ ∈ T .

Suppose now that T ⊆ C and U ⊆ D are Serre subcategories and that F : C → D is
an exact functor such that F (T ) ⊆ U . We obtain an induced functor F : C/T → D/U

which agrees with F on objects and on morphisms is defined by F (φ) = F (φ). If (F,G) is
an adjoint pair of exact functors with F (T ) ⊆ U and G(U) ⊆ T then there is an adjunction
(F ,G) induced from that of (F,G) in the obvious way.
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