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1. Representation stability

[CF] T. Church, B. Farb, Representation theory and homological
stability, Adv Math 245 (2013), 250-314.
introduced ‘representation stability’. There is a sequence of groups
with natural inclusions Gn ↪→ Gn+1, a representation Vn of Gn for each
i, linear maps φn : Vn → Vn+1 so that for all g ∈ Gn the following
diagram commutes:

Vn
φn−→ Vn+1

g

y yg
Vn

φn−→ Vn+1

Such a sequence of representations they call consistent.
They were interested in groups such as Gn = SLnQ and various

other classical groups, and also Gn = Sn, the symmetric group. The
morphism Sn → Sn+1 includes Sn as the stabilizer of n + 1. The sort
of representations they consider include Vn = H i(Confn(M);Q) where
Confn(M) is the configuration space of n points on a manifold M .
Given a configuration with n+ 1 points we get a configuration with n
points by omitting the last point, and this gives a map in cohomology
in the opposite direction.

They put three conditions on a consistent sequence to say that it is
representation stable. We give these conditions in the case of symmetric
groups, in characteristic 0. If λ = (λ1, λ2, . . . , λt) is a partition of k,
and (n− k, λ1, λ2, . . . , λt) is the padded partition of n we put V (λ) for
the simple representation of Sn corresponding to the partition of n.
The conditions are that for sufficiently large n:

(1) For sufficiently large n, φn is injective.
(2) For sufficiently large n, the image of φn generates Vn+1 as a

representation of Sn+1.
(3) For each λ, the composition factor multiplicities [Vn : V (λ)] are

eventually independent of n.

There is a stronger condition than (3). If (3′) is satisfied we say that
the consistent sequence is uniformly representation stable:
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(3’) There exists N , not depending on λ, so that for n ≥ N the
multiplicities [Vn : V (λ)] are independent of n for all λ.

This means that the composition lengths of the Vn are eventually
constant. If λ is such that V (λ) is not defined at N then V (λ) does
not appear as a composition factor. It follows that the dimensions of
the Vn are eventually polynomial.

2. FI-modules

[CEF] T. Church, J.S. Ellenberg, B. Farb, FI-modules and stability
for representations of symmetric groups, preprint Nov 3, 2014
introduced formalism to encode the stability of such sequences. They
define FI to be the category of finite sets with morphisms the injections
of sets. Recall that a category has objects and morphisms, each object
has an identity morphism and there is an associative law of composition
of morphisms. Up to isomorphism, each object of FI is isomorphic to
[n] = {1, . . . , n} for some natural number n.

A representation over a commutative ring k of a category C is a
functor M : FI → k-mod. Thus to each object we associate a vector
space M(x) and to each morphism a linear map between the vector
spaces, so that composition of these linear maps follows the law of
composition in the category.

A group may be regarded as a category with just one object where
all the morphisms are invertible. In this case a representation of the
group regarded as a category is the same thing as a representation of
the group in the usual sense.

Given a quiver, we may construct the free category on the quiver,
and a representation of the free category is the same thing as a repre-
sentation of the quiver.

If x is an object of a category C and M is a representation, so that
M(x) is a vector space, every endomorphism α : x → x gives rise
to a linear map M(α) : M(x) → M(x), so that M(x) becomes a
representation of the monoid EndC(x). In FI, the monoid End([n])
is Sn. Thus each representation M of FI includes a representation
M([n]) of Sn, one for each integer n.

In FI there are (n + 1)! morphims [n] → [n + 1] and they lie in
a single orbit under composition with Sn+1, and n + 1 orbits under
composition on the other side with Sn. Let i : [n] → [n + 1] be the
natural inclusion (we could have taken any monomorphism for this with
suitable modification). Then for every permutation π ∈ Sn ≤ Sn+1 we
have M(π)M(i) = M(i)M(π) so that M(i) is equivariant for the action
of Sn and the sequence Vn := M([n]) is consistent.
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The following statement appears just before 3.3.2 in [CEF]

Proposition 2.1. The consistent sequences coming from FI-modules
are precisely the ones with the property that if σ ∈ Sk ≤ Sn+k then σ
acts as the identity on the image of Vn in Vn+k.

Proof. One direction follows by functoriality from the identity σi =
i. �

There is also information in an FI-module that is not encoded in a
consistent sequence.

3. Finite generation

Representations of a category C themselves form an abelian category.
Given a representation M : C → k-mod a subrepresentation is a rep-
resentation M1 with M1(x) ⊆ M(x) for all objects x. There is then a
quotient representation M/M1 with (M/M1)(x) := M(x)/M1(x); and
so on. There is also an algebra kC called the category algebra with
the property that (apart from a finiteness condition when there are
infinitely many objects) the representations of C are the same thing as
modules for kC.

A representation M is finitely generated if there is a finite subset
S ⊆

⊔
M(x) of elements of the values of M so that M is the smallest

subfunctor of M containing S.
The following is an immediate deduction from Theorem 1.13 of [CEF].

Theorem 3.1. Let k be a field of characteristic zero. The following
are equivalent for an FI-module V and the corresponding consistent
sequence of representations Vn:

(1) V is finitely generated;
(2) {Vn} is uniformly representation stable and each Vn is finite

dimensional;
(3) {Vn} is representation stable and each Vn is finite dimensional.

Proof. (1) implies (2) is substantial and (2) implies (3) is immediate.
We do (3) implies (1) only. Suppose that {Vn} is representation stable,
so that there exists N for which the image of φn generates Vn+1 as a
kSn+1-module when n ≥ N . This means that V is generated by its
values at objects [n] with n ≤ N . Since those spaces are all finite
dimensional, they are finitely generated and (1) follows. �

A characteristic zero version of the following theorem appears as
Theorem 1.3 of [CEF]. Over Noetherian rings it was proved in [CEFN].
The essential categorical properties used were extracted in [GL] and a
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proof given in that generality. Such an approach was also taken in [SS].
Two further proofs were given by Liping Li in [L].

Theorem 3.2. Let k be a Noetherian ring. Then FI-modules are
Noetherian.

Proof. It comes down to examining the linearized representable func-
tors P[n]. For any object x in a category C we have a linearized repre-
sentable functor Px : C → k-mod given by Px(y) = kHomC(x, y). By
Yoneda’s lemma these are projective. Px is generated by its value at x.
Every finitely generated representation of C is an image a finite direct
sum of these. It suffices to show that the Px are Noetherian. �
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