$3^{\text {rd }}$ midterm for MATH 1272: Calculus II, section 030

Name:

ID \#:
Instructions:

Section Number:
Teaching Assistant:

- Please don't turn over this page until you are directed to begin.
- There are 5 problems on this exam, and all except problem 2 have multiple parts.
- There are 7 pages to the exam, including this page. All of them are one-sided. If you run out of room on the page that you're working on, use the back of the page.
- Please show all your work. Answers unsupported by an argument will get little credit.
- Scientific calculators are allowed. No books or notes are allowed. Please turn off your cell phones.

Grading summary

Problem:	1	2	3	4	5	total
Possible:	10 points	5 points	30 points	15 points	20 points	80 points
Grade:						

Some helpful formulas

$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$	$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$	$\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$
$\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$	$\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$	$\tan ^{-1}(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$

1. (10 points total, 5 points each) Determine whether the following sequences $\left\{a_{n}\right\}$ converge or diverge. If they converge, compute the limit, $\lim _{n \rightarrow \infty} a_{n}$.
(a) $a_{n}=\frac{2+7 n^{2}}{n+n^{2}}$.
(b) $a_{n}=\frac{n^{2}}{\sqrt{n^{2}-n}}$.
2. (5 points) Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \cdot 5^{n}}$. How many terms of the series do we need to sum in order to be within an error of at most 10^{-4} of the actual infinite sum?
3. (30 points total, 5 points each) Are the following series absolutely convergent, conditionally convergent, or divergent? Justify for your answer. If they converge, you do not need to compute their sum.
(a) $\sum_{n=2}^{\infty}(-1)^{n}\left(\frac{n^{3}}{n^{4}-1}\right)$.
(b) $\sum_{n=1}^{\infty} \ln \left(\frac{n^{2}+1}{2 n^{2}+1}\right)$.
(c) $\sum_{n=2}^{\infty}\left(\frac{-n}{2 n+1}\right)^{5 n}$.
(Continued from previous page)
(d) $\sum_{n=1}^{\infty}\left(\frac{3}{5^{n}}+\frac{2}{n}\right)$.
(e) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$.
(f) $\sum_{n=1}^{\infty} \frac{3^{n} \cdot n^{2}}{n!}$.
4. (15 points total, 5 points each) Find the radius of convergence of the following power series:
(a) $\sum_{n=1}^{\infty}(-4)^{n}(x-5)^{n}$.
(b) $\sum_{n=1}^{\infty} n^{n} x^{n}$.
(c) $\sum_{n=1}^{\infty} \frac{(x-7)^{n}}{n!}$.
5. (20 points total, 5 points each) Find a power series representation for the following functions and determine the radius of convergence:
(a) $f(x)=x \cos x$, centered at $a=0$.
(b) $f(x)=\cos x$, centered at $a=\pi$.
(Continued from previous page)
(c) $f(x)=\frac{x}{9+x^{2}}$, centered at $a=0$.
(d) $f(x)=\ln (5-x)$, centered at $a=4$.
