Homework #11 for MATH 5345H: Introduction to Topology

December 4, 2017

Due Date: Monday 11 December in class.

- 1. Let X be a topological space, and $A \subseteq X$ a subspace. A is said to be a *retract* of X if there exists a continuous function $p: X \to A$ with the property that p(a) = a for every $a \in A$.
 - (a) If A is a retract of X, show that the inclusion map $i: A \to X$ (given by i(a) = a) induces an injective homomorphism $i_*: \pi_1(A, a_0) \to \pi_1(X, a_0)$ for any $a_0 \in A$. Further, show that $p_*: \pi_1(X, a_0) \to \pi_1(A, a_0)$ is surjective.
 - (b) The map p is said to be a *deformation retraction* if, further, there is a homotopy $i \circ p \simeq \operatorname{id}_X$ relative to A (that is, if H is the homotopy, then H(a, t) = a for every $a \in A$). Show that in this case, p_* and i_* are inverse isomorphisms.
- 2. A region $P \subseteq \mathbb{R}^2$ in the plane is said to be *star-shaped* with respect to a point $p \in P$ if for every $q \in p$, the straight line \overline{pq} from p to q is contained in P.
 - (a) Show that if P is star-shaped, then it is *contractible* (homotopy equivalent to a point).
 - (b) If P is a polygon which is star-shaped with respect to a point p in the interior of P, define a function

$$f: P \setminus \{p\} \to S^1$$
 via $f(q) = \frac{q-p}{|q-p|}$

and show that f is a homotopy equivalence.

(c) Let P be the square $[-1,1] \times [-1,1] \subseteq \mathbb{R}^2$, and let T^2 be the *torus*: T^2 is the quotient space P/\sim under the relation \sim which identifies the left side with the right, and the top with the bottom:

$$(-1, y) \sim (1, y)$$
 and $(x, -1) \sim (x, 1)$.

Prove that if $p \in T^2$ is the image of $(0,0) \in P$, then there is a homotopy equivalence

$$T^2 \setminus p \simeq S^1 \vee S^1$$

from the torus punctured at p to the wedge of two circles (here, the *wedge* of spaces X and Y with respect to two points $x \in X$ and $y \in Y$ is $X \lor Y := X \sqcup Y / \sim'$, where \sim' is the equivalence relation which *only* identifies $x \sim' y$.