Homework \#4 for MATH 5345H: Introduction to Topology

September 26, 2017

Due Date: Monday 2 October in class.

1. Let $X=\mathbb{Z}_{\geq 0} \times[0,1)$. Both $\mathbb{Z}_{\geq 0}$ and $[0,1)$ are ordered sets, coming from the order on \mathbb{R}, by restriction to these subsets. Equip X with the dictionary order, and the order topology coming from this order. Let $Y=[0, \infty) \subseteq \mathbb{R}$ be the closed ray in \mathbb{R}, equipped with the subspace topology. This question aims to show that X and Y are homeomorphic.
(a) Define $f: X \rightarrow Y$ by the formula $f(n, t)=n+t$. Define $g: Y \rightarrow X$ by $g(x)=(\lfloor x\rfloor, x-\lfloor x\rfloor)$, where $\lfloor x\rfloor$ is the greatest integer less than x. Verify that these are mutually inverse bijections.
(b) Show that f and g are continuous, and conclude that X and Y are homeomorphic.
2. Show that the dictionary order topology on $\mathbb{R} \times \mathbb{R}$ is the same as the product topology on $\mathbb{R}_{d} \times \mathbb{R}$, where \mathbb{R}_{d} denotes \mathbb{R} with the discrete topology.
3. Show that the collection

$$
\{(a, b) \times(c, d) \mid a, b, c, d, \in \mathbb{Q}, a<b, c<d\}
$$

is a countable basis for the product topology on \mathbb{R}^{2}.
4. Let X be an ordered set, and give it the order topology. Show that the closure $\overline{(a, b)}$ of the open interval (a, b) is contained in the closed interval $[a, b]$; that is, $\overline{(a, b)} \subseteq[a, b]$. Under what conditions (i.e., for what properties of the order) are they equal?
5. Show that every order topology is Hausdorff.

