Homework \#4 for MATH 8301: Manifolds and Topology

September 26, 2017

Due Date: Monday 2 October in class.

1. For a 2-dimensional simplicial complex (V, \mathcal{F}) with v vertices, e edges, and f triangles, the Euler characteristic χ is defined to be

$$
\chi=v-e+f .
$$

(a) If the geometric realization of (V, \mathcal{F}) is a compact surface, find a relation between e and f.
(b) Using the previous part, give formulas for e and f as functions of χ and v, and show that they are nondecreasing in v.
(c) Using the formulas from the previous problem (possibly repeatedly), show that any triangulation of a compact surface of Euler characteristic 0 requires at least 7 vertices. Hints: Is there an extremely naive lower bound on the number of vertices of a 2 dimensional complex? Is there an upper bound on the number of edges as a function of the number of vertices?
2. A region $P \subseteq \mathbb{R}^{2}$ in the plane is said to be star-shaped with respect to a point $p \in P$ if for every $q \in p$, the straight line $\overline{p q}$ from p to q is contained in P.
(a) Show that if P is star-shaped, then it is contractible.
(b) If P is a polygon which is star-shaped with respect to a point p in the interior of P, define function

$$
f: P \backslash\{p\} \rightarrow S^{1} \text { via } f(q)=\frac{q-p}{|q-p|}
$$

and show that f is a homotopy equivalence.
(c) Prove that if $p \in T^{2}$, there is a homotopy equivalence

$$
T^{2} \backslash p \simeq S^{1} \vee S^{1}
$$

from the torus punctured at p to the wedge of two circles (here, the wedge of spaces X and Y with respect to two points $x \in X$ and $y \in Y$ is $X \vee Y:=X \sqcup Y / \sim$, where \sim is the equivalence relation which only identifies $x \sim y$.

