Homework \#5 for MATH 8301: Manifolds and Topology

October 2, 2017

Due Date: Monday 9 October in class.

1. Let G be a group, and define \mathcal{C} to be the category with a single object $*$ and

$$
\operatorname{Hom}_{\mathcal{C}}(*, *)=G .
$$

The identity element of G gives the identity morphism $i_{*}: * \rightarrow *$, and composition in this category comes from multiplication in G.

Let k be a field, and let Vect $_{k}$ be the category of vector spaces over k : objects are vector spaces, and morphisms are linear maps.
(a) Recall that a representation of a group G is an action of G on a vector space V where each element $g \in G$ acts on V through linear maps. Let $F: \mathcal{C} \rightarrow \operatorname{Vect}_{k}$ be a functor. Show that $V:=F(*)$ is a representation of G.
(b) Conversely, for any representation V of G over a field k, construct a functor $F: \mathcal{C} \rightarrow \operatorname{Vect}_{k}$ with $F(*)=V$.
2. Let \mathcal{C} be a category. A morphism $f: X \rightarrow Y$ is said to be an isomorphism if there exists a morphism $g: Y \rightarrow X$ with the property that $f \circ g=\operatorname{id}_{Y}$ and $g \circ f=\mathrm{id}_{X}$.
(a) Let Set be the category of sets. Show that a map $f: X \rightarrow Y$ is an isomorphism in Set if and only if it is a bijection.
(b) Let Top be the category of topological spaces; show that $f: X \rightarrow Y$ is an isomorphism in Set if and only if it is a homeomorphism.
(c) Let hTop be the homotopy category of topological spaces: objects in hTop are topological spaces, and

$$
\operatorname{Hom}_{\mathrm{hTop}}(X, Y)=\{f: X \rightarrow Y \text { continuous }\} / \simeq
$$

where $f \simeq g$ if f is homotopic to g. Show that $f: X \rightarrow Y$ is an isomorphism in hTop if and only if it is a homotopy equivalence.
(d) Show that every morphism in the the category \mathcal{C} of problem 1 is an isomorphism.
(e) Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor, and let $f: X \rightarrow Y$ be an isomorphism in \mathcal{C}. Show that $F(f)$ is an isomorphism in \mathcal{D}.
3. For a topological space X, let $\pi_{0}(X)$ denote the set of path components of X; this is the quotient set of X under the relation $x \sim y$ if there exists a path in X from x to y.
(a) For a continuous map $f: X \rightarrow Y$, let $\pi_{0}(f): \pi_{0}(X) \rightarrow \pi_{0}(Y)$ denote the function $\pi_{0}(f)([x])=[f(x)]$, where $[-]$ denotes equivalence classes under \sim. Show that $\pi_{0}(f)$ is well-defined.
(b) Show that the operations π_{0} (defined above on spaces and continuous maps) defines a functor $\pi_{0}: \mathrm{Top} \rightarrow$ Set.
(c) Show that in fact π_{0} also defines a functor $\pi_{0}: \mathrm{hTop} \rightarrow$ Set by the same formula.
(d) Prove that if X is homotopy equivalent to Y, then $\# \pi_{0}(X)=\# \pi_{0}(Y)$. That is, the cardinality of the set of path components of X and Y agree. Hint: Problem $2(\mathrm{e})$ may be helpful.

