Homework #5 for MATH 8301: Manifolds and Topology

October 2, 2017

Due Date: Monday 9 October in class.

1. Let G be a group, and define C to be the category with a single object * and

 $\operatorname{Hom}_{\mathcal{C}}(*,*) = G.$

The identity element of G gives the identity morphism $i_* : * \to *$, and composition in this category comes from multiplication in G.

Let k be a field, and let $Vect_k$ be the category of vector spaces over k: objects are vector spaces, and morphisms are linear maps.

- (a) Recall that a *representation* of a group G is an action of G on a vector space V where each element $g \in G$ acts on V through linear maps. Let $F : \mathcal{C} \to \operatorname{Vect}_k$ be a functor. Show that V := F(*) is a representation of G.
- (b) Conversely, for any representation V of G over a field k, construct a functor $F: \mathcal{C} \to \operatorname{Vect}_k \operatorname{with} F(*) = V.$
- 2. Let \mathcal{C} be a category. A morphism $f: X \to Y$ is said to be an *isomorphism* if there exists a morphism $g: Y \to X$ with the property that $f \circ g = \operatorname{id}_Y$ and $g \circ f = \operatorname{id}_X$.
 - (a) Let Set be the category of sets. Show that a map $f: X \to Y$ is an isomorphism in Set if and only if it is a bijection.
 - (b) Let Top be the category of topological spaces; show that $f : X \to Y$ is an isomorphism in Set if and only if it is a homeomorphism.
 - (c) Let hTop be the homotopy category of topological spaces: objects in hTop are topological spaces, and

 $\operatorname{Hom}_{\operatorname{hTop}}(X,Y) = \{f: X \to Y \text{ continuous}\}/\simeq$

where $f \simeq g$ if f is homotopic to g. Show that $f : X \to Y$ is an isomorphism in hTop if and only if it is a homotopy equivalence.

(d) Show that every morphism in the the category \mathcal{C} of problem 1 is an isomorphism.

- (e) Let $F : \mathcal{C} \to \mathcal{D}$ be a functor, and let $f : X \to Y$ be an isomorphism in \mathcal{C} . Show that F(f) is an isomorphism in \mathcal{D} .
- 3. For a topological space X, let $\pi_0(X)$ denote the set of path components of X; this is the quotient set of X under the relation $x \sim y$ if there exists a path in X from x to y.
 - (a) For a continuous map $f: X \to Y$, let $\pi_0(f): \pi_0(X) \to \pi_0(Y)$ denote the function $\pi_0(f)([x]) = [f(x)]$, where [-] denotes equivalence classes under \sim . Show that $\pi_0(f)$ is well-defined.
 - (b) Show that the operations π_0 (defined above on spaces and continuous maps) defines a functor π_0 : Top \rightarrow Set.
 - (c) Show that in fact π_0 also defines a functor π_0 : hTop \rightarrow Set by the same formula.
 - (d) Prove that if X is homotopy equivalent to Y, then $\#\pi_0(X) = \#\pi_0(Y)$. That is, the cardinality of the set of path components of X and Y agree. **Hint:** Problem 2(e) may be helpful.