Homework #6 for MATH 8301: Manifolds and Topology

October 17, 2017

Due Date: Monday 23 October in class.

1. Let $\{G_{\alpha}\}_{\alpha \in A}$ be a set of groups indexed by A, and write

 $G := \bigstar_{\alpha \in A} G_{\alpha}$

for the free product of the G_{α} . Let H be any group, and write Hom(G, H) for the *set* of group homomorphisms from G to H. Prove that there is a bijection

$$\operatorname{Hom}(G,H) \cong \prod_{\alpha \in A} \operatorname{Hom}(G_{\alpha},H),$$

where the target is the product of the sets $\operatorname{Hom}(G_{\alpha}, H)$.

2. Let X be a set; a binary operation on X is a map $\mu : X \times X \to X$. Assume that X has two binary operations; we'll write them as

$$(x, y) \mapsto x \star y$$
 and $(x, y) \mapsto x \cdot y$.

Assume that both \star and \cdot are unital: there are elements 1_{\star} and 1. with

 $x \star 1_{\star} = x = 1_{\star} \star x$ and $x \cdot 1_{\cdot} = x = 1_{\cdot} \cdot x$.

Also assume that \star and \cdot interact via:

$$(x \cdot y) \star (w \cdot z) = (x \star w) \cdot (y \star z) \tag{1}$$

Hints: For all the following, do a lot of multiplying by 1, and invoking Equation (1).

- (a) Prove that $1 = 1_{\star}$.
- (b) Prove that $a \cdot b = b \star a$ and that $a \cdot b = a \star b$. That is: \star and \cdot are commutative, and are equal.
- (c) Prove that \star (and hence \cdot) is associative.

3. Let G be a topological space with a continuous binary operation $\mu : G \times G \to G$ and an element $e \in G$ with the property¹ that $\mu(g, e) = g = \mu(e, g)$. Let γ and ρ be loops in G based at e, and define

$$(\gamma \cdot \rho)(t) = \mu(\gamma(t), \rho(t)).$$

- (a) Define a binary operation \cdot on $\pi_1(G, e)$ as $[\gamma] \cdot [\rho] = [\gamma \cdot \rho]$. Verify that this is well-defined.
- (b) Let $1. \in \pi_1(G, e)$ be the homotopy class of the constant loop at e. Show that $[\gamma] \cdot 1. = [\gamma] = 1. \cdot [\gamma]$.
- (c) Let \star be the binary operation on $\pi_1(G, e)$ coming from concatenation of loops. Show that \star and \cdot satisfy Equation (1).
- (d) Prove that $\pi_1(G, e)$ is an abelian group (using the usual multiplication of concatenation of loops).
- 4. Let X be the space

$$X = \{ x \in \mathbb{R}^3 \mid 1 \le |x| \le 2 \} \subseteq \mathbb{R}^3.$$

X has two boundary components, S_1 and S_2 , consisting of those elements of norm 1 and 2, respectively. Generate an equivalence relation \sim on X by setting $x \sim y$ if $x \in S_1, y \in S_2$, and $y = 2x_1$. Compute $\pi_1(X/\sim, x_0)$ for any point $x_0 \in X/\sim$.

 $^{{}^1}G$ could be, for instance, a topological group.