Homework \#6 for MATH 8301: Manifolds and Topology

October 17, 2017

Due Date: Monday 23 October in class.

1. Let $\left\{G_{\alpha}\right\}_{\alpha \in A}$ be a set of groups indexed by A, and write

$$
G:=\star_{\alpha \in A} G_{\alpha}
$$

for the free product of the G_{α}. Let H be any group, and write $\operatorname{Hom}(G, H)$ for the set of group homomorphisms from G to H. Prove that there is a bijection

$$
\operatorname{Hom}(G, H) \cong \prod_{\alpha \in A} \operatorname{Hom}\left(G_{\alpha}, H\right),
$$

where the target is the product of the sets $\operatorname{Hom}\left(G_{\alpha}, H\right)$.
2. Let X be a set; a binary operation on X is a map $\mu: X \times X \rightarrow X$. Assume that X has two binary operations; we'll write them as

$$
(x, y) \mapsto x \star y \quad \text { and } \quad(x, y) \mapsto x \cdot y
$$

Assume that both \star and \cdot are unital: there are elements 1_{\star} and 1 . with

$$
x \star 1_{\star}=x=1_{\star} \star x \quad \text { and } \quad x \cdot 1 .=x=1 \cdot x .
$$

Also assume that \star and • interact via:

$$
\begin{equation*}
(x \cdot y) \star(w \cdot z)=(x \star w) \cdot(y \star z) \tag{1}
\end{equation*}
$$

Hints: For all the following, do a lot of multiplying by 1, and invoking Equation (1).
(a) Prove that $1 .=1_{\star}$.
(b) Prove that $a \cdot b=b \star a$ and that $a \cdot b=a \star b$. That is: \star and \cdot are commutative, and are equal.
(c) Prove that \star (and hence \cdot) is associative.
3. Let G be a topological space with a continuous binary operation $\mu: G \times G \rightarrow G$ and an element $e \in G$ with the property ${ }^{1}$ that $\mu(g, e)=g=\mu(e, g)$. Let γ and ρ be loops in G based at e, and define

$$
(\gamma \cdot \rho)(t)=\mu(\gamma(t), \rho(t)) .
$$

(a) Define a binary operation \cdot on $\pi_{1}(G, e)$ as $[\gamma] \cdot[\rho]=[\gamma \cdot \rho]$. Verify that this is well-defined.
(b) Let $1 . \in \pi_{1}(G, e)$ be the homotopy class of the constant loop at e. Show that $[\gamma] \cdot 1 .=[\gamma]=1 . \cdot[\gamma]$.
(c) Let \star be the binary operation on $\pi_{1}(G, e)$ coming from concatenation of loops. Show that \star and \cdot satisfy Equation (1).
(d) Prove that $\pi_{1}(G, e)$ is an abelian group (using the usual multiplication of concatenation of loops).
4. Let X be the space

$$
X=\left\{x \in \mathbb{R}^{3}|1 \leq|x| \leq 2\} \subseteq \mathbb{R}^{3} .\right.
$$

X has two boundary components, S_{1} and S_{2}, consisting of those elements of norm 1 and 2 , respectively. Generate an equivalence relation \sim on X by setting $x \sim y$ if $x \in S_{1}, y \in S_{2}$, and $y=2 x_{1}$. Compute $\pi_{1}\left(X / \sim, x_{0}\right)$ for any point $x_{0} \in X / \sim$.

[^0]
[^0]: ${ }^{1} G$ could be, for instance, a topological group.

