Homework \#8 for MATH 8301: Manifolds and Topology

October 31, 2017

Due Date: Monday 6 November in class.

1. Let $z_{1}, \ldots, z_{n} \in \mathbb{C}$ be n distinct points (i.e., $z_{i} \neq z_{j}$ for $i \neq j$), and let $f(z)=$ $\left(z-z_{1}\right) \cdots\left(z-z_{n}\right)$. Define

$$
Y:=\left\{(z, w) \mid w^{2}=f(z)\right\} .
$$

The space Y is a Riemann surface, known as a hyperelliptic curve. Define a function $p: Y \rightarrow \mathbb{C}$ by $p(z, w)=z$; this is an example of a branched covering of \mathbb{C}, and $\left\{z_{1}, \ldots, z_{n}\right\}$ is the branch locus. Define $X=\mathbb{C} \backslash\left\{z_{1}, \ldots, z_{n}\right\}$, and

$$
\bar{X}:=Y \backslash p^{-1}\left(\left\{z_{1}, \ldots, z_{n}\right\}\right)=Y \backslash\left\{\left(z_{1}, 0\right), \ldots,\left(z_{n}, 0\right)\right\} .
$$

Let $p: \bar{X} \rightarrow X$ the restriction of p to these subspaces.
(a) Notice that X is the subspace of \mathbb{C} on which $f(z) \neq 0$. Define four subspaces of X by

$$
\begin{array}{cll}
R_{+}=\{z \in X \mid \Re(f(z))>0\}, & R_{-}=\{z \in X \mid \Re(f(z))<0\}, \\
I_{+}=\{z \in X \mid \Im(f(z))>0\}, & I_{-}=\{z \in X \mid \Im(f(z))<0\} .
\end{array}
$$

Here, if $z=a+b i, \Re(z)=a$ denotes the real part of z, and $\Im(z)=b$ is the imaginary part. Using these subspaces, show that $p: \bar{X} \rightarrow X$ is a covering space.
(b) Let $f: \bar{X} \rightarrow \bar{X}$ be the function $f(z, w)=(z,-w)$. Show that f is a homeomorphism, and that $p \circ f=p$. Such maps are called deck transformations or automorphisms the covering space.
(c) Besides the identity of \bar{X}, are there any other automorphisms of $p: \bar{X} \rightarrow X$?
(d) For simplicity, let's take $n=2$, and define $z_{1}=0$, and $z_{2}=2$. Let $x_{0}=1 \in X \subseteq$ \mathbb{C} be a basepoint for X. What is $p^{-1}\left(x_{0}\right)$?
(e) The fact that $p \circ f=p$ implies that f permutes elements of $p^{-1}\left(x_{0}\right)$. Compute this permutation.
(f) Define a loop $\gamma:[0,1] \rightarrow X$ based at x_{0} by $\gamma(t)=e^{2 \pi i t}$. By the path lifting property of covering spaces, for each element $x \in p^{-1}\left(x_{0}\right)$, there is a unique lift of γ to a path $\bar{\gamma}_{x}:[0,1] \rightarrow \bar{X}$ (with $p \circ \bar{\gamma}_{x}=\gamma$) based at x (i.e., $\bar{\gamma}_{x}(0)=x$). Find a formula for all of these lifted paths (hint: there are only two lifts).
(g) In the previous part, the fact that $p \circ \bar{\gamma}_{x}=\gamma$ implies that $\bar{\gamma}_{x}(1) \in p^{-1}\left(x_{0}\right)$. We may define a new permutation of $p^{-1}\left(x_{0}\right)$ by the formula

$$
x \mapsto \bar{\gamma}_{x}(1)
$$

Compute this permutation. How does it relate to the one coming from part (e)?
2. Let L_{1}, \ldots, L_{n} be n distinct lines in \mathbb{R}^{3} passing through the origin. Compute the fundamental group of

$$
\mathbb{R}^{3} \backslash \bigcup_{i=1}^{n} L_{i}
$$

3. The join $X * Y$ of two (nonempty) spaces X and Y is the quotient of the product $X \times Y \times I$ by the equivalence relation

$$
(x, y, 0) \sim\left(x^{\prime}, y, 0\right) \text { and }(x, y, 1) \sim\left(x, y^{\prime}, 1\right)
$$

for all $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y$. If X is path connected, show that $X * Y$ is simply connected.

