Homework #1 for MATH 8302: Manifolds and Topology II

February 5, 2018

Due Date: Monday 12 February in class.

- 1. (a) Let $p \in \mathbb{R}P^n$ be any point, and let $D \subseteq \mathbb{R}P^n$ be a small open disk containing p; show that $\mathbb{R}P^n \setminus D$ is homotopy equivalent to $\mathbb{R}P^{n-1}$.
 - (b) Let $S = \partial(\overline{D})$ be the boundary of the closure of D; S is homeomorphic to S^{n-1} . Compute the map $H_*(S) \to H_*(\mathbb{R}P^n \setminus D)$ which is induced by the inclusion of the subspace.
 - (c) Compute $H_*(\mathbb{R}P^n \# \mathbb{R}P^n)$.
- 2. (a) Find a representative for a generator of $\widetilde{H}_0(S^0) \cong \mathbb{Z}$.
 - (b) Enumerate the set of continuous maps $S^0 \to S^0$. Using the previous problem, compute their degrees.
- 3. Show that every self map of $\mathbb{R}P^n$ has a fixed point if n is even. Is the same true if n is odd?
- 4. Let X be the quotient space of the cube I^3 where one identifies opposite faces with a 1/4 twist.
 - (a) Show that X supports a CW structure with two 0-cells, four 1-cells, three 2-cells, and one 3-cell.
 - (b) Compute $H_*(X)$ using cellular homology.