Homework #3 for MATH 8302: Manifolds and Topology II

March 20, 2018

Due Date: Monday 26 March in class.

- 1. Let $f: X \to Y$ be a smooth submersion between two smooth, compact manifolds of the same dimension. Show that $f: X \to Y$ is a covering space.
- 2. Fix positive integers n and k, with $k \leq n$.
 - (a) Show that the set $S \subset (\mathbb{R}^n)^{\times k}$ consisting of all linearly independent k-tuples (v_1, \ldots, v_k) of vectors $v_i \in \mathbb{R}^n$ forms an open subset.¹
 - (b) Show that the map $\sigma : \mathbb{R}^k \times S \to \mathbb{R}^n$ given by

$$[(t_1,\ldots,t_k),(v_1,\ldots,v_k)]\mapsto t_1v_1+\cdots+t_kv_k$$

is a submersion.

(c) There is an action of the group $\operatorname{GL}_k(\mathbb{R})$ on S, where for a matrix $A = (a_{ij}) \in \operatorname{GL}_k(\mathbb{R})$

$$A \cdot (v_1, \ldots, v_k) = (\sum_j a_{1j}v_j, \ldots, \sum_j a_{kj}v_j)$$

Construct a bijection from the set of orbits $\operatorname{GL}_k(\mathbb{R})\backslash S$ to the set G of subspaces of \mathbb{R}^n of dimension k.

- (d) Let X be a submanifold of \mathbb{R}^n . Prove that there is a dense subset of $T \subseteq S$ with the property that if $(v_1, \ldots, v_k) \in T$, then X intersects the span $V = \langle v_1, \ldots, v_k \rangle$ transversally. Colloquially: almost every k-dimensional subspace $V \leq \mathbb{R}^n$ intersects X transversally.
- (e) (Bonus problem, not required) The space G is called the Grassmannian of k-planes in ℝⁿ; part (c) allows us to topologize G via the quotient topology on GL_k(ℝ)\S. Show that G is a manifold of dimension (n − k)k.

¹The space S is a slight variant on the *Stiefel manifold*, where the v_j are required to additionally be orthonormal.

3. Let $f: V \to W$ be a linear map. Picking a basis v_1, \ldots, v_n and w_1, \ldots, w_m of V and W, respectively, the matrix for f is given by $A = (a_{ij})$, where

$$f(v_i) = \sum_j a_{ij} w_j$$

- (a) A basis for $\Lambda^p V$ is given by $v_{i_1} \wedge \cdots \wedge v_{i_p}$, where $1 \leq i_1 < i_2 < \cdots < i_p \leq n$. Compute the matrix of $\Lambda^2 f$ with respect to this basis (when p = 2); if you're feeling excited, extend this to arbitrary p.
- (b) Prove that the map $\operatorname{Hom}(V, W) \to \operatorname{Hom}(\Lambda^2 V, \Lambda^2 W)$ which carries f to $\Lambda^2 f$ is smooth. Here, we use the fact that $\operatorname{Hom}(V, W) \cong \mathbb{R}^{nm}$ to define smoothness.