Homework \#3 for MATH 8302: Manifolds and Topology II

March 20, 2018

Due Date: Monday 26 March in class.

1. Let $f: X \rightarrow Y$ be a smooth submersion between two smooth, compact manifolds of the same dimension. Show that $f: X \rightarrow Y$ is a covering space.
2. Fix positive integers n and k, with $k \leq n$.
(a) Show that the set $S \subset\left(\mathbb{R}^{n}\right)^{\times k}$ consisting of all linearly independent k-tuples $\left(v_{1}, \ldots, v_{k}\right)$ of vectors $v_{j} \in \mathbb{R}^{n}$ forms an open subset. ${ }^{1}$
(b) Show that the map $\sigma: \mathbb{R}^{k} \times S \rightarrow \mathbb{R}^{n}$ given by

$$
\left[\left(t_{1}, \ldots, t_{k}\right),\left(v_{1}, \ldots, v_{k}\right)\right] \mapsto t_{1} v_{1}+\cdots+t_{k} v_{k}
$$

is a submersion.
(c) There is an action of the group $\mathrm{GL}_{k}(\mathbb{R})$ on S, where for a matrix $A=\left(a_{i j}\right) \in$ $\mathrm{GL}_{k}(\mathbb{R})$

$$
A \cdot\left(v_{1}, \ldots, v_{k}\right)=\left(\sum_{j} a_{1 j} v_{j}, \ldots, \sum_{j} a_{k j} v_{j}\right)
$$

Construct a bijection from the set of orbits $\mathrm{GL}_{k}(\mathbb{R}) \backslash S$ to the set G of subspaces of \mathbb{R}^{n} of dimension k.
(d) Let X be a submanifold of \mathbb{R}^{n}. Prove that there is a dense subset of $T \subseteq S$ with the property that if $\left(v_{1}, \ldots, v_{k}\right) \in T$, then X intersects the span $V=$ $\left\langle v_{1}, \ldots, v_{k}\right\rangle$ transversally. Colloquially: almost every k-dimensional subspace $V \leq$ \mathbb{R}^{n} intersects X transversally.
(e) (Bonus problem, not required) The space G is called the Grassmannian of k-planes in \mathbb{R}^{n}; part (c) allows us to topologize G via the quotient topology on $\mathrm{GL}_{k}(\mathbb{R}) \backslash S$. Show that G is a manifold of dimension $(n-k) k$.

[^0]3. Let $f: V \rightarrow W$ be a linear map. Picking a basis v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{m} of V and W, respectively, the matrix for f is given by $A=\left(a_{i j}\right)$, where
$$
f\left(v_{i}\right)=\sum_{j} a_{i j} w_{j}
$$
(a) A basis for $\Lambda^{p} V$ is given by $v_{i_{1}} \wedge \cdots \wedge v_{i_{p}}$, where $1 \leq i_{1}<i_{2}<\cdots<i_{p} \leq n$. Compute the matrix of $\Lambda^{2} f$ with respect to this basis (when $p=2$); if you're feeling excited, extend this to arbitrary p.
(b) Prove that the map $\operatorname{Hom}(V, W) \rightarrow \operatorname{Hom}\left(\Lambda^{2} V, \Lambda^{2} W\right)$ which carries f to $\Lambda^{2} f$ is smooth. Here, we use the fact that $\operatorname{Hom}(V, W) \cong \mathbb{R}^{n m}$ to define smoothness.

[^0]: ${ }^{1}$ The space S is a slight variant on the Stiefel manifold, where the v_{j} are required to additionally be orthonormal.

