Homework #2 for MATH 8307: Algebraic Topology

April 7, 2015

Due Date: Wednesday 22 April in class.

1. Let X and Y be connected topological spaces.

 (a) If X and Y are CW complexes, recall that $X \times Y$ may be given the structure of a CW complex with a $(p + q)$-dimensional cell of the form $e^p \times e^q$ for each pair consisting of a p-cell e^p in X and q-cell e^q in Y. Show that if X and Y each have a single 0-cell which we will take to be the basepoint, there is a cell structure on $X \wedge Y$ with a single 0-cell, and a $p + q$-dimensional cell for each pair consisting of a p-cell in X and q-cell in Y, where neither p nor q is allowed to be 0.

 (b) Under the previous assumptions, if X has no cells of dimension less than n, and Y has no cells of dimension less than m (other than the single 0-cell in each), show that $\pi_q(X \wedge Y) = 0$ for $q < m + n$.

 (c) Now let X and Y be arbitrary $(n - 1)$-connected based topological spaces. Show, using some form of the homotopy excision theorem, that the homotopy groups of $X \vee Y$ vanish in degrees less than n, and that $\pi_n(X \vee Y) \cong \pi_n(X) \oplus \pi_n(Y)$. Don’t use the Hurewicz theorem in your argument; this fact (for spheres) is required for the proof of Hurewicz.

2. Let \mathbb{H} denote the division algebra of quaternions, and write $\mathbb{H}^\times = \mathbb{H} \setminus \{0\}$ for the group of units with the operation of multiplication. Define

 $$\mathbb{H}^n := (\mathbb{H}^{n+1} \setminus \{0\}) / \mathbb{H}^\times$$

 where the action of \mathbb{H}^\times on nonzero vectors in \mathbb{H}^{n+1} is by:

 $$\lambda \cdot (x_0, \ldots, x_n) = (\lambda x_0, \ldots, \lambda x_n)$$

 (a) Show that \mathbb{H}^n is homeomorphic to the quotient space S^{4n+3} / S^3, where $S^{4n+3} \subseteq \mathbb{H}^{n+1} \setminus \{0\}$ is the subset of norm 1, and $S^3 \subseteq \mathbb{H}^\times$ is the subgroup of norm 1.

 (b) Show that \mathbb{H}^1 is homeomorphic to S^4.

 (c) Show that the quotient map $S^{4n+3} \to \mathbb{H}^n$ is a principal S^3-fibre bundle.

 (d) Show that $\pi_k S^3 \cong \pi_{k+1} S^4$ when $k \leq 5$. Can you use the Freudenthal suspension theorem for this result?

 (e) Take as given Serre’s theorem: $\pi_k S^{2n-1}$ is finite for $k \neq 2n - 1$. Show that in contrast, $\pi_7 S^4$ contains an element of infinite order.

 (f) Let $G \leq \mathbb{H}^\times$ be a discrete subgroup, and define $X_n := (\mathbb{H}^{n+1} \setminus \{0\}) / G$, where the action of G is via \mathbb{H}^\times. Let $X = \cup_n X_n$ be the union of X_n induced by the inclusions $\mathbb{H}^{n+1} \setminus \{0\} \subseteq \mathbb{H}^{n+2} \setminus \{0\}$. Compute the homotopy groups of X.