Homework \#4 for MATH 5345H: Introduction to Topology

September 24, 2013

Due Date: Monday 30 September in class.

1. Let $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ denote the set of polynomials in n variables x_{1}, \ldots, x_{n} whose coefficients lie in \mathbb{R}. So, for instance, $x_{1}-3 x_{2}^{2}+\sqrt{2} x_{7}^{4} \in \mathbb{R}\left[x_{1}, \ldots, x_{9}\right]$, but neither $\frac{x_{1}}{x_{2}}$ nor $i x_{5}^{3}$ is an element of this set of polynomials.
For a subset $S \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, write $V(S) \subseteq \mathbb{R}^{n}$ to be the set
$V(S)=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid f\left(x_{1}, \ldots, x_{n}\right)=0, \forall f \in S\right\}=\bigcap_{f \in S}\left\{\left(x_{1}, \ldots, x_{n}\right) \mid f\left(x_{1}, \ldots, x_{n}\right)=0\right\}$.
Let $U(S)=\mathbb{R}^{n} \backslash V(S)$. We will show that the collection $T_{Z}=\left\{U(S), S \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]\right\}$ forms a topology on \mathbb{R}^{n}, called the Zariski topology.
(a) For any real number r (such as $r=0$ or $r=1$), write r for the constant polynomial r. Show that $V\left(\{(0\})=\mathbb{R}^{n}\right.$.
(b) Show that $V(\{1\})=\emptyset$.
(c) Show that, for any indexing set J,

$$
V\left(\bigcup_{j \in J} S_{j}\right)=\bigcap_{j \in J} V\left(S_{j}\right)
$$

(d) For any two sets $S, T \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, define

$$
S T:=\{f \cdot g \mid f \in S, g \in T\} .
$$

Show that $V(S T)=V(S) \cup V(T)$.
(e) Show that T_{Z} is a topology on \mathbb{R}^{n}.
(f) Fix $n=1$, and show that for any set $S \subseteq \mathbb{R}\left[x_{1}\right], V(S)$ is finite. Conversely, let $F \subset \mathbb{R}$ be any finite set. Find a set $T \subseteq \mathbb{R}\left[x_{1}\right]$ with $V(T)=F$.
(g) Show that the Zariski topology on \mathbb{R}^{1} is equal to the finite complement topology.

Also do these problems from Munkres' Topology:

- Munkres, ch. 2 §13 \#3, 5, 8.

