Homework #4 for MATH 5345H: Introduction to Topology

September 24, 2013

Due Date: Monday 30 September in class.

1. Let $\mathbb{R}[x_1,\ldots,x_n]$ denote the set of polynomials in n variables x_1,\ldots,x_n whose coefficients lie in \mathbb{R} . So, for instance, $x_1-3x_2^2+\sqrt{2}x_7^4\in\mathbb{R}[x_1,\ldots,x_9]$, but neither $\frac{x_1}{x_2}$ nor ix_5^3 is an element of this set of polynomials.

For a subset $S \subseteq \mathbb{R}[x_1, \dots, x_n]$, write $V(S) \subseteq \mathbb{R}^n$ to be the set

$$V(S) = \{(x_1, \dots, x_n) \mid f(x_1, \dots, x_n) = 0, \forall f \in S\} = \bigcap_{f \in S} \{(x_1, \dots, x_n) \mid f(x_1, \dots, x_n) = 0\}.$$

Let $U(S) = \mathbb{R}^n \setminus V(S)$. We will show that the collection $T_Z = \{U(S), S \subseteq \mathbb{R}[x_1, \dots, x_n]\}$ forms a topology on \mathbb{R}^n , called the *Zariski topology*.

- (a) For any real number r (such as r = 0 or r = 1), write r for the constant polynomial r. Show that $V(\{0\}) = \mathbb{R}^n$.
- (b) Show that $V(\{1\}) = \emptyset$.
- (c) Show that, for any indexing set J,

$$V(\bigcup_{j\in J} S_j) = \bigcap_{j\in J} V(S_j)$$

(d) For any two sets $S, T \subseteq \mathbb{R}[x_1, \dots, x_n]$, define

$$ST := \{f \cdot g \mid f \in S, g \in T\}.$$

Show that $V(ST) = V(S) \cup V(T)$.

- (e) Show that T_Z is a topology on \mathbb{R}^n .
- (f) Fix n = 1, and show that for any set $S \subseteq \mathbb{R}[x_1]$, V(S) is finite. Conversely, let $F \subset \mathbb{R}$ be any finite set. Find a set $T \subseteq \mathbb{R}[x_1]$ with V(T) = F.
- (g) Show that the Zariski topology on \mathbb{R}^1 is equal to the finite complement topology.

Also do these problems from Munkres' *Topology*:

• Munkres, ch. 2 §13 #3, 5, 8.