Problem (Spring 2008, #5). Show that \(f(x) = x^p - x + a \) is irreducible over \(\mathbb{F}_p \) whenever \(a \in \mathbb{F}_p \) is not zero.

Proof. First, note that \(f(x) \) has no roots in \(\mathbb{F}_p \): since \(b^p = b \mod p \) (Fermat’s Little Theorem), \(f(b) = b^p - b + a = a \neq 0 \). Now, let \(\alpha \) be a root of \(f(x) \) in the algebraic closure of \(\mathbb{F}_p \). Note that \(\alpha + i \) for \(i = 1, \ldots, p \) is also a root of \(f(x) \). This is because in a field of characteristic \(p \), we have \((x + y)^p = x^p + y^p \) for every \(x \) and \(y \) in the field; so

\[
 f(\alpha + i) = (\alpha + i)^p - (\alpha + i) + a
\]

becomes

\[
 \alpha^p + i^p - (\alpha + i) + a.
\]

Again, by Fermat’s Little Theorem, \(i^p = i \), so this equation becomes

\[
 \alpha^p - \alpha + a,
\]

which is zero by the assumption that \(\alpha \) is a root. Thus, \(\mathbb{F}_p(\alpha) \) contains every root of \(f(x) \) and so

\[
 f(x) = \prod_{i=1}^{p} x - (\alpha + i)
\]

over \(\mathbb{F}_p(\alpha) \).

Now suppose, to the contradiction, that \(f(x) = g(x)h(x) \in \mathbb{F}_p[x] \) such that \(1 < \deg g(x) < p \). Then, letting \(d = \deg g(x) \),

\[
 g(x) = \prod_{j=1}^{d} x - (\alpha + i_j)
\]

over \(\mathbb{F}_p(\alpha) \). Expanding this product shows that the coefficient of \(x^{d-1} \) is \(-\sum_{j=1}^{d} \alpha + i_j \), which is equal to \(-da + k \), for some \(k \in \mathbb{F}_p \). Since \(g(x) \) has coefficients in \(\mathbb{F}_p \) and \(d \) is not zero, this means that \(\alpha \) lies in \(\mathbb{F}_p \), contradicting the fact that \(f(x) \) has no roots in \(\mathbb{F}_p \).

∗These solutions, chronologically listed, have not been checked by any prelim graders.
Problem (Fall 2008, #2). Prove that if a polynomial f in $k[x]$ with a field k has a repeated irreducible factor g in $k[x]$, then g divides the greatest common divisor of f and its derivative. Be sure to explain what *derivative* can mean without limits.

Proof. First, let’s define the *algebraic* derivative of a polynomial $f(x) = a_nx^n + \cdots + a_1x + a_0$ in $k[x]$. We define the map $D : k[x] \to k[x]$ on the k-basis of $k[x]$ by $Dx^n = nx^{n-1}$ and extend k-linearly. To see if the product rule holds, we evaluate D on the product of two basis elements:

$$D(x^n x^m) = Dx^{n+m} = (n+m)x^{n+m-1}.$$

On the other hand:

$$Dx^n \cdot x^m + x^n \cdot Dx^m = nx^{n-1}x^m + mx^n x^{m-1} = (n+m)x^{n+m-1}.$$

Since the product rule holds on the basis elements and D is k-linear, it holds for all polynomials in $k[x]$.

Note that $D1 = D(1 \cdot 1) = D1 \cdot 1 + 1 \cdot D1$, so $D1 = 0$. Extending k-linearly, this means that the derivative of any constant polynomial is zero (which was left a bit ambiguous in our definition). Conversely, if $D(a_nx^n + a_{n-1}x^{n-1} + \cdots) = na_nx^{n-1} + (n-1)a_{n-1}x^{n-2} + \cdots = 0$ in a field with characteristic not dividing n, then it must be that $n = 0$.

Now suppose $f(x) = g(x)^n h(x)$, where $n > 1$ and g is irreducible. g certainly divides f, so we just need to show that g also divides Df. We compute Df:

$$Df = D(g^n h) = Dg^n \cdot h + g^n \cdot Dh = ng^{n-1}h + g^n Dh.$$

If the characteristic of k divides n, then $Df = g^n Dh$ and we have that g divides both f and Df. If the characteristic of k does not divide n, then the irreducibility of g means that g is nonconstant (any constant is a unit in $k[x]$, since k is a field), so $Dg \neq 0$. By assumption, $n-1 > 0$, so we can factor out $g(x)$ from Df, giving us:

$$Df = g(ng^{n-2}h + g^{n-1}Dh).$$

So g divides Df. So, in any characteristic, g must divide the greatest common divisor of f and Df.

Problem (Fall 2009, #7). Show that $f(z) = wz^4 - 4z + 1 = 0$ has multiple roots z only for $w = 27$.

Proof. A multiple root α of $f(z)$ is also a root of the algebraic derivative1 $Df(z) = 4wz^3 - 4$. I.e.,

$$4w\alpha^3 - 4 = 0,$$

which means that $w = \alpha^{-3}$. So, plugging α into f gives us

$$f(\alpha) = \alpha^{-3}\alpha^4 - 4\alpha + 1 = 0,$$

which simplifies to $\alpha = 1/3$. So $w = \alpha^{-3} = (1/3)^{-3} = 27$, as we wished to show.

1I’m assuming that we’re working over a field, although the problem does not say so.
Problem (Spring 2010, #5). Let R be a commutative ring of endomorphisms of a finite-dimensional complex vector space V. Prove that there is at least one (non-zero) common eigenvector for R on V.

Proof. Let W be the \mathbb{C}-linear span of R. So, W is a subspace of $\text{End}_\mathbb{C}(V)$, hence finite-dimensional since V is. By definition, every vector in W is a \mathbb{C}-linear combination of elements of R. So, because the elements of R commute, W is also commutative (with respect to composition). Let T_1, \ldots, T_n be a basis for W. Let’s now show that we can find a simultaneous eigenvector for this basis.

We induct on n: for $n = 1$, T_1 has an eigenvector since \mathbb{C} is algebraically closed. Hence, the minimal polynomial for T_1 has a root over \mathbb{C}, which is an eigenvalue corresponding to a nonzero eigenvector.

Now assume T_1, \ldots, T_{n-1} have a simultaneous eigenvector, say $v \in V$ with $T_i v = \lambda_i v$. Letting V_{λ_i} denote the λ_i-eigenspace for T_i where $1 \leq i < n$, we show that the intersection $\bigcap_{i=1}^{n-1} V_{\lambda_i}$ is T_n-stable. Indeed, a vector w in the intersection lies in each V_{λ_i}, so $T_i w = \lambda_i w$ for $1 \leq i < n$. So, $T_i T_n w = T_n T_i w = T_n \lambda_i w = \lambda_i T_n w,$ since $T_i T_n = T_n T_i$. So $T_n w$ lies in each V_{λ_i}, hence lies in the intersection. Now, since the intersection $\bigcap_{i=1}^{n-1} V_{\lambda_i}$ is T_n-stable, it makes sense to speak of the minimal polynomial for T_n of this subspace. Once again, since \mathbb{C} is algebraically closed, this polynomial has a root, which precisely corresponds to an eigenvector v' for T_n. Since v' lies in $\bigcap_{i=1}^{n-1} V_{\lambda_i}$, it is simultaneously an eigenvector for the entire basis T_1, \ldots, T_n, say with respective eigenvalues γ_i.

Now it just remains to show that v' is a simultaneous eigenvector for R. If r is any element of R, then

$$r = \sum_{i=1}^{n} a_i T_i$$

for a_i in \mathbb{C}. So,

$$r(v') = (\sum a_i T_i)(v') = \sum a_i T_i(v') = \sum a_i \gamma_i v' = (\sum a_i \gamma_i)v'$$

Thus, v' is an eigenvector for each R. □

Problem (Fall 2010, #3). Show that $f(x) = x^{25} - 10$ factors linearly over \mathbb{F}_{101}, the field of 101 elements.

Proof. Note that $10^4 = 100 \cdot 100 = (-1)(-1) = 1 \mod 101$. So 10 is a root of $f(x)$ since

$$10^{25} = 10^{24} \cdot 10 = 1 \cdot 10 = 10.$$

Now consider \mathbb{F}_{101}^\times, which is cyclic of order 100. Since 25 divides 100, there is an element α of order 25. For $j = 0, 1, \ldots, 24$, we have

$$(10 \cdot \alpha^j)^{25} = 10^{25} \cdot (\alpha^{25})^j = 10.$$
Since \(C \) (i.e., are diagonalizable). Then there is a matrix, namely \(D \) having a basis of eigenvectors. To see this, let \(\lambda_i \) be the minimal polynomial for \(X \), \(A \) is diagonal. From \(D = AXA^{-1} \), we get that \(XA^{-1} = A^{-1}D \). So

\[
XA^{-1}e_i = A^{-1}De_i = A^{-1}\lambda_ie_i = \lambda_iA^{-1}e_i.
\]

So \(A^{-1}e_i \) is an eigenvector for \(X \). Because \(A^{-1} \) is an isomorphism, the vectors \(\{A^{-1}e_i\}_{i=1,...,n} \) are a basis for \(\mathbb{C}^n \), thus an eigenbasis.

Conversely, suppose \(X \) has an eigenbasis \(v_1, \ldots, v_n \) for \(\mathbb{C}^n \) with \(Xv_i = \lambda_iv_i \). Let \(P \) be the matrix such that the \(i \)th column of \(P \) is \(v_i \). Then \(P \) has full rank, hence \(P^{-1} \) exists. Furthermore, \(P^{-1}XP \) is diagonal, since

\[
P^{-1}XP_{e_i} = P^{-1}Xv_i = P^{-1}\lambda_i v_i = \lambda_iP^{-1}v_i = \lambda_i e_i,
\]

So, there is a matrix, namely \(P^{-1} \), such that conjugating \(X \) with \(P^{-1} \) yields a diagonal matrix.

Returning to the original problem, we see that \(X \) and \(Y \) both have an eigenbasis for \(\mathbb{C}^n \) (i.e., are diagonalizable). Then \(\mathbb{C}^n = \bigoplus V_\lambda \), the direct sum of distinct eigenspaces of \(X \). Since \(X \) and \(Y \) commute, each \(V_\lambda \) is \(Y \)-stable.

Let’s show that for a diagonalizable linear operator \(T \) on a finite dimensional vector space \(V \) over a field \(k \), whenever \(W \subset V \) is \(T \)-stable, \(T \) is diagonalizable on \(W \). Let \(f(x) \) be the minimal polynomial for \(T \) on \(V \) over \(k \). Since \(W \) is \(T \)-stable, it makes sense to speak about the minimal polynomial \(g(x) \) for \(T \) on \(W \). Since \(f(T)(V) = 0 \), \(f(T)(W) = 0 \). Thus, by definitely of \(g(x) \), \(g(x) \) divides \(f(x) \). And because \(T \) is diagonalizable, \(f(x) \) splits into distinct linear factors. Then so does \(g(x) \) and, hence, \(T \) is diagonalizable on \(W \).

So each \(V_\lambda \) has a basis of eigenvectors for \(Y \). And because these vectors lie in \(V_\lambda \), they are eigenvectors for \(X \). Taking the union of these vectors gives us a basis for \(\mathbb{C}^n \) that are simultaneously eigenvectors for \(\mathbb{C}^n \). Then, from what we saw above, letting these vectors be the columns of a matrix \(C \), we have that \(C^{-1}XC \) and \(C^{-1}YC \) are diagonal. \(\square \)

Problem (Fall 2011, #1). Describe all abelian groups of order 72.

Proof. By the Fundamental Theorem of Finite Abelian Groups, any group \(G \) of order 72 is isomorphic to the direct product of cyclic groups of prime power order, unique up to reordering. Also, by Sun-Ze’s theorem, we may collapse the direct product cyclic groups
\[\mathbb{Z}/m \times \mathbb{Z}/n \text{ to } \mathbb{Z}/mn \] whenever \(m \) and \(n \) are relatively prime. That said, we enumerate all abelian groups of order \(72 = 2^3 \cdot 3^2 \):

\[
\begin{align*}
\mathbb{Z}/8 \times \mathbb{Z}/9 &\cong \mathbb{Z}/72 \\
\mathbb{Z}/8 \times \mathbb{Z}/3 \times \mathbb{Z}/3 &\cong \mathbb{Z}/24 \times \mathbb{Z}/3 \\
\mathbb{Z}/4 \times \mathbb{Z}/2 \times \mathbb{Z}/9 &\cong \mathbb{Z}/4 \times \mathbb{Z}/18 \\
\mathbb{Z}/4 \times \mathbb{Z}/2 \times \mathbb{Z}/3 \times \mathbb{Z}/3 &\cong \mathbb{Z}/12 \times \mathbb{Z}/6 \\
\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/9 &\cong \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/18 \\
\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/3 \times \mathbb{Z}/3 &\cong \mathbb{Z}/2 \times \mathbb{Z}/6 \times \mathbb{Z}/6
\end{align*}
\]

\[\square \]

Problem (Fall 2011, #5). Prove that the ideal generated by 7 and \(x^2 + 1 \) is maximal in \(\mathbb{Z}[x] \).

Proof. Let \(M \) denote the ideal generated by 7 and \(x^2 + 1 \). To show that \(M \) is maximal, we’ll show that \(\mathbb{Z}[x]/M \) is a field. Note that

\[\mathbb{Z}[x]/M \cong (\mathbb{Z}[x]/7)/(x^2 + 1) \cong (\mathbb{Z}/7)[x]/(x^2 + 1). \]

So \(\mathbb{Z}[x]/M \) is a field if and only if \((\mathbb{Z}/7)[x]/(x^2 + 1) \) is a field. Since \(\mathbb{Z}/7 \) is a field, \((\mathbb{Z}/7)[x] \) is a unique factorization domain. Now notice that because \(x^2 + 1 \) has no roots (a root would have order 4 in \((\mathbb{Z}/7)^\times \), which is impossible by Lagrange) in \(\mathbb{Z}/7 \), it is irreducible. But in a unique factorization domain, this means that \(x^2 + 1 \) is prime and generates a prime ideal. So \((\mathbb{Z}/7)[x]/(x^2 + 1) \) is an integral domain. But it is a finite integral domain, so it is a field.

Problem (Spring 2012, #1). Show that all groups of order 35 are cyclic.

Proof. Let \(G \) be a group of order \(35 = 3 \cdot 7 \). By Sylow’s theorem, the number of 5-Sylow subgroups is equal to 1 modulo 5 and also must divide 35. The only number satisfying these conditions is 1. So there is a unique 5-Sylow subgroup \(H \). Furthermore, since \(p \)-Sylow subgroups are conjugate to one another, \(H \) being the unique 5-Sylow subgroup means that \(H \) must be normal in \(G \). Similarly, the number of 7-Sylow subgroups is equal to 1 modulo 7 and must divide 35. Again, the only possibility is that there is a unique (hence normal) 7-Sylow subgroup \(K \). Note that if \(x \) is an element of both \(H \) and \(K \), then Lagrange tells us that \(x^5 = 1 = x^7 \). So the order of \(x \) divides both 5 and 7, thus the order of \(x \) must be 1. Thus, \(H \cap K = 1 \).

Since \(H \) and \(K \) are normal and \(H \cap K = 1 \), we have that

\[HK \cong H \times K \cong \mathbb{Z}/5 \times \mathbb{Z}/7. \]

And because 5 and 7 are relatively prime, \(\mathbb{Z}/5 \times \mathbb{Z}/7 \cong \mathbb{Z}/35 \). So \(HK \) is a subgroup of \(G \) of order 35, so \(HK \) equals \(G \). So \(G \) is isomorphic to \(\mathbb{Z}/35 \). \[\square \]

Problem (Spring 2012, #2). Let \(G \) be a finite group and \(H \) a subgroup of index 2. Show that \(H \) is normal.
Proof. By definition, the index of H in G is the number of left cosets of H, which is the same as the number of right cosets of H. Thus, there are two left cosets: H and gH, where g does not lie in H. Because these two sets are disjoint and their union is G, $gH = G - H$. Similarly, $Hg = G - H$. So $gH = Hg$ for all g, which is exactly the statement that H is normal. □