The relaxed game chromatic index of trees

Charles Dunn†, David Morawski‡, Jennifer Nordstrom†

Linfield College†
University of California, Berkeley‡

Joint Mathematics Meetings
16 January, 2010
Day one of graph theory

A graph $G = (V, E)$: A tree $T = (V, E)$ (no cycles):

![Tree illustration]

Not a tree (≥ 1 cycle):

![Not a tree illustration]

Degree of a vertex v: the number of vertices adjacent to v.

$\Delta(T)$ = maximum degree of a tree T.
A **proper edge coloring** of a graph G is an assignment of colors to each edge of G such that if e and f are adjacent edges (i.e., share a common vertex), then e and f are assigned different colors. For example:

![Proper and improper colorings](image)

Figure: Proper and improper colorings (left to right).

The minimum number of colors needed to properly color the edges of a graph G is called the **chromatic index** of G, denoted $\chi'(G)$.
It’s not difficult to see that \(\Delta(G) \leq \chi'(G) \) for any graph \(G \).

Less trivially, we have the following upper bound for the chromatic index:

Theorem (Vizing, 1964)

For any graph \(G \), \(\chi'(G) \leq \Delta(G) + 1 \).

Thus, \(\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1 \) for any graph \(G \).

Unfortunately, it’s NP-complete to determine whether the chromatic index of a graph is \(\Delta \) or \(\Delta + 1 \) (Holyer, 1981).
Relaxed edge colorings

A \textit{d-relaxed edge coloring} is an edge coloring in which we allow an edge \(e \) to be colored \(\alpha \) if:

- \(e \) is adjacent to at most \(d \alpha \)-colored edges, and
- if \(f \) is an \(\alpha \)-colored edge adjacent to \(e \), then \(f \) is adjacent to at most \(d - 1 \alpha \)-colored edges.

For example:

In a 2-relaxed edge coloring, \(e \) could be colored with blue, but \textit{not} red.
The relaxed edge coloring game

The \((r, d)\)-relaxed edge coloring game on a graph \(G\) is as follows:

- A two player game—say Alice and Bob, where Alice plays first.
- Alice and Bob alternate coloring one uncolored edge per turn.
- \(r\) colors available.
- The players agree to a \(d\)-relaxed proper coloring.
- If the graph is properly colored, Alice wins.
- In the case of an uncolorable edge, Bob wins.
For a fixed defect d, the d-relaxed game chromatic index of a graph G, denoted $^d\chi'_g(G)$, is the least number of colors r such that Alice has a winning strategy in the (r, d)-relaxed edge coloring game.

We write the 0-relaxed edge-game chromatic index as $\chi'_g(G)$.

For a fixed number of colors r, the r-edge-game defect of a graph G, denoted $\text{def}'_g(G, r)$, is the least defect d such that Alice has a winning strategy in the game.
What’s already known . . .

Theorem (Cai & Zhu, 2001)

For any tree T, $\chi'_g(T) \leq \Delta(T) + 2$.

Theorem (Dunn, 2007)

*For any tree T with $\Delta(T) = \Delta$, $\text{def}'_g(T, \Delta + 1) \leq 1$. Furthermore, if $d \geq 1$, then $d^{\chi'_g(T)} \leq \Delta + 1$.

Theorem (Dunn, 2007)

*For any tree T with $\Delta(T) = \Delta$, $\text{def}'_g(T, \Delta) \leq 3$. Furthermore, if $d \geq 3$, then $d^{\chi'_g(T)} \leq \Delta$.

Can we keep going? . . . yes.
The main result

Theorem (Dunn, M., Nordstrom, 2009)

Let T be a tree with $\Delta(T) = \Delta$. Then, for any $k = 1, 2, \ldots, \Delta - 1$,
$
\text{def}_g'(T, \Delta - k) \leq 2k + 2.
$
Furthermore, if $d \geq 2k + 2$, then $d\chi'_g(T) \leq \Delta - k$.

<table>
<thead>
<tr>
<th>Theorem (Cai & Zhu, 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For any tree T, $\chi'_g(T) \leq \Delta(T) + 2$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Dunn, 2007)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For any tree T with $\Delta(T) = \Delta$, $\text{def}_g'(T, \Delta + 1) \leq 1$. Furthermore, if $d \geq 1$, then $d \chi'_g(T) \leq \Delta + 1$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Dunn, 2007)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For any tree T with $\Delta(T) = \Delta$, $\text{def}_g'(T, \Delta) \leq 3$. Furthermore, if $d \geq 3$, then $d \chi'_g(T) \leq \Delta$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Dunn, M., Nordstrom, 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let T be a tree with $\Delta(T) = \Delta$. Then, for any $k = 1, 2, \ldots, \Delta - 1$, $\text{def}_g'(T, \Delta - k) \leq 2k + 2$. Furthermore, if $d \geq 2k + 2$, then $d \chi'_g(T) \leq \Delta - k$.</td>
</tr>
</tbody>
</table>
For a colored edge e, we let $c(e)$ denote the color of e.

For an edge e, the **defect** of e, denoted $\text{def}(e)$, is the number of edges adjacent to e having the same color as e. If e is uncolored, $\text{def}(e) = 0$.

A color α is **eligible** for an edge e if the parent of e is not colored α.

Alice only uses eligible colors.
We fix a tree $T = (V, E)$ with $\Delta(T) = \Delta$.

We also fix $k = 1, 2, \ldots, \Delta - 1$.

Recall, our result tells us a sufficient defect when Alice and Bob are playing the game with $\Delta - k$ colors.
Definition: secure

For an edge e, we say that $B[e]$ is secure if there exists a colored $Y \subseteq B[e]$ such that $|Y| \geq k$ and, for every edge $f \in Y$, there exists $f' \in B[e] - Y$ with $c(f) = c(f')$.

For example:

![Diagram](image)

Here we have $\Delta = 7$ and $k = 3$. If Alice and Bob are playing with $\Delta - k = 4$ colors, then there is an eligible color for e that does not appear among the siblings of e.

This is always the case when $B[e]$ is secure, for any edge e.
Alice’s strategy consists of a

- **Search stage:** Alice locates the edge e that she will color, in response to the move just made by Bob.

- **Coloring stage:** Alice chooses an eligible color for e, with the hope of minimizing the defect of nearby edges.
Alice’s strategy: activation

Alice will maintain a set $A \subseteq E$ of active edges.

Once an edge is activated—i.e., put into A—it remains active for the remainder of the game.

All colored edges are active.

Alice activates edges in response to moves made by Bob.
Alice’s strategy: searching

Suppose Bob has just colored an edge b the same color as its parent $p(b)$.

1. If the grandparent $p^2(b)$ is uncolored, Alice selects it and moves to the coloring stage.

2. Otherwise, Alice selects any uncolored sibling of $p(b)$.
Alice’s strategy: coloring

Suppose Alice is about to color an edge e:

- If $B[e]$ is secure, then Alice chooses an eligible color for e that does not appear among the siblings of e.
- If possible, let f be the last edge to be colored with an eligible color for e, such that $p(f)$ is a sibling of e and $c(f) = c(p(f))$. If such an edge exists, Alice colors e with $c(f)$.
- Otherwise, Alice chooses an eligible color for e that minimizes $\text{def}(e)$.
Given any tree T with $\Delta(T) = \Delta$, $k = 1, 2, \ldots, \Delta - 1$, and considering the relaxed edge coloring game with $\Delta - k$ colors:

We have outlined a strategy for Alice such that she may always make a legal move, while keeping the defect of any edge at most $2k + 2$.

Furthermore, if the defect is greater than $2k + 2$, the arguments remain valid.

Since Bob may adopt Alice’s strategy at any point during the game, both players always have a legal move that respects the defect. Thus,

- $\text{def}_g'(T, \Delta - k) \leq 2k + 2$ and,
- $\text{g}_g'(T) \leq \Delta - k$, whenever $d \geq 2k + 2$.

Thanks!

This would not have been possible without advisors Charles Dunn and Jennifer Nordstrom, the Willamette Valley Consortium for Mathematics Research, and the National Science Foundation (Grant No. DMS-0649068).